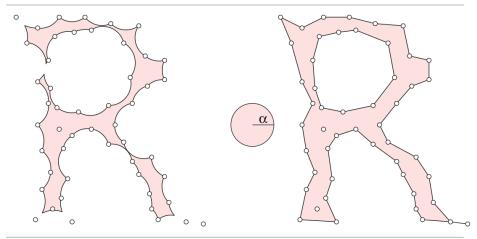
What is...topological data analysis?

Or: Subfields of mathematics 3

The study of shapes

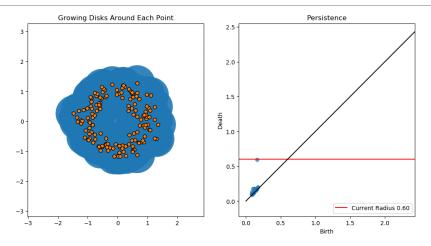
In topology a cow and a sphere are the same!



Topology = the study of shape

Example The main stars of topology are continuous maps: topologists never study $x^2 + y^2 = 1$ itself but rather the class of its continuous deformations

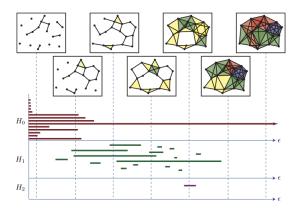
• Question Is it 'useful' to study shapes?


Enter: topological data analysis (TDA)

► Say we have a point cloud of data and we want to known its 'shape'

- Form discs of radius α; the α hull is the complement of the union of the discs hitting no point; the α shape is obtained by straightening the edges
- TDA provides methods to study the 'shape of data'

Persistent homology

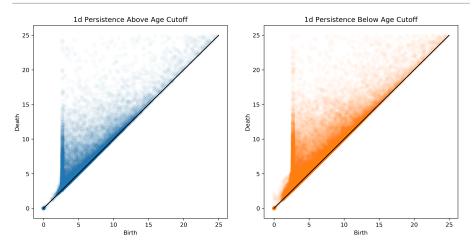

Persistent homology = measure the shape of data using growing discs

Better than an explanation is an animation

Example The 1th persistent homology measures how internal circles change

Enter, the theorem

Persistent homology is visualized through a barcode diagram (makes sense because of the theorem below):



Theorem Any finitely generated persistence module has only free and torsion parts

► Free = things that survive; torsion = things that die

► Topological data analysis answers similar questions!

Real-world applications of TDA

Homology proved useful in detecting age differences in brain artery trees
Idea Render brain artery trees into point-clouds and use persistent homology
Differences are subtle – like most differences in human brains – but measurable

Thank you for your attention!

I hope that was of some help.