What is...additive combinatorics?

Or: Subfields of mathematics 2

Arithmetic progression

- Arithmetic progression (AP) = constant difference between terms
- Example "Little Gauss"
- APs are studied since the early days of math

Additive questions

•	ŀ	\bigtriangledown	\diamond	\mathbf{i}			
Z1	Z ₂	Z ₃	Z ₄	Z_5	$Z_6 = Z_3 \times Z_2$	Z ₇	Z ₈
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Z9	$Z_{10} = Z_5 \times Z_2$	Z ₁₁	$Z_{12} = Z_4 \times Z_3$	Z ₁₃	$Z_{14} = Z_7 \times Z_2$	$Z_{15} = Z_5 \times Z_3$	Z ₁₆
Z9	$Z_{10} = Z_5 \times Z_2$	Z ₁₁	$Z_{12} = Z_4 \times Z_3$	Z ₁₃	$Z_{14} = Z_7 \times Z_2$	$Z_{15} = Z_5 \times Z_3$	Z ₁₆

Additive combinatorics studies AP, very broadly interpreted

• Example For finite subsets  $A, B \subset \mathbb{Z}/p\mathbb{Z}$  what can be said about |A + B|?

Example answer One has  $|A + B| \ge \min(|A| + |B| - 1, p)$ 

## The game Set



Set = card game with  $3^4 = 81$  cards that vary in four features

Goal Find 'sets' where all features are the same or different

• Enter, APs Cards correspond to points of  $(\mathbb{Z}/3\mathbb{Z})^4$ , sets are 3-APs

## Enter, the theorem



This is Roth's theorem in  $(\mathbb{Z}/3\mathbb{Z})^n$ 

- ► This is a combinatorial version of Roth's theorem (a classic in number theory)
- Additive combinatorics answers similar questions!

This is also finite geometry



- Cap set = subset of  $(\mathbb{Z}/3\mathbb{Z})^n$  where no three elements sum to the zero vector
- **Example (above)** 9 points, 12 lines in  $(\mathbb{Z}/3\mathbb{Z})^2$ , and a (yellow) cap set

Thank you for your attention!

I hope that was of some help.