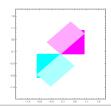
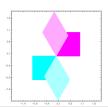
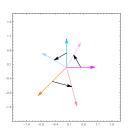

What is...matrix multiplication?

Or: Why the definition is not random.


Operations visually


60 rotation matrix
$$\begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$
 30 shearing matrix $\begin{pmatrix} 1 & 1/\sqrt{3} \\ 0 & 1 \end{pmatrix}$

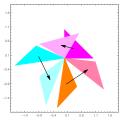
First rotate, then shear
$$\begin{pmatrix} 1/2 & -1/\sqrt{3} \\ \sqrt{3}/2 & 1 \end{pmatrix}$$
 First shear, then rotate $\begin{pmatrix} 1 & -1/\sqrt{3} \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$



Wish. Matrix multiplication should be composition of actions!

Action on vectors

Where does
$$(1,0)$$
 go? $\binom{1/2}{\sqrt{3}/2} \binom{3}{1/2} \binom{1}{0} = \binom{1/2}{\sqrt{3}/2}$ Where does $(0,1)$ go? $\binom{1/2}{\sqrt{3}/2} \binom{-\sqrt{3}/2}{1/2} \binom{0}{1} = \binom{-\sqrt{3}/2}{1/2}$ Where does $(-1,-1)$ go? $\binom{1/2}{\sqrt{3}/2} \binom{-\sqrt{3}/2}{1/2} \binom{-1}{-1} = \binom{-1/2+\sqrt{3}/2}{-1/2-\sqrt{3}/2}$

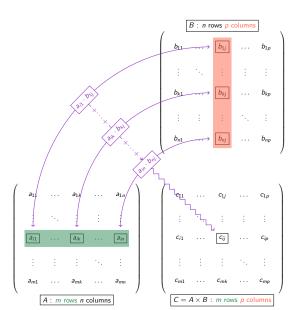

Define matrix times vector as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} a \\ c \end{pmatrix} + y \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} xa + yb \\ xc + yd \end{pmatrix}$$

Action on triangles

Where does the unit square go?
$$\binom{1/2}{\sqrt{3}/2} \binom{-\sqrt{3}/2}{1/2} \binom{1\ 0\ 1}{0\ 1} = \binom{1/2}{\sqrt{3}/2} \binom{-\sqrt{3}/2}{1/2}$$
 Where does the cyan triangle go? $\binom{1/2}{\sqrt{3}/2} \binom{-\sqrt{3}}{1/2} \binom{-\sqrt{3}}{-1} \binom{-1/2}{\sqrt{3}/4} = \binom{0\ -1/2}{2\ 0}$

Where does the orange triangle go?
$$\binom{1/2}{\sqrt{3}/2} - \binom{1/4}{1/2} \binom{-1/4}{-\sqrt{3}} \binom{-1}{-1} = \binom{11/8}{-5\sqrt{3}/8} \binom{5\sqrt{3}/8}{-1/8}$$



Define matrix times matrix as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{pmatrix}$$

For completeness: A formal definition.

The matrix multiplication of a $m \times n$ matrix A and an $n \times p$ matrix B is defined as:

Life is not commutative.

First rotate, then shear:

$$\begin{pmatrix} 1 & 1/\sqrt{3} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/\sqrt{3} \\ \sqrt{3}/2 & 1 \end{pmatrix}$$

First shear, then rotate:

This shear, then rotate.
$$\begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & \sqrt{3}/2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1/\sqrt{3} \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$

Thank you for your attention!

I hope that was of some help.