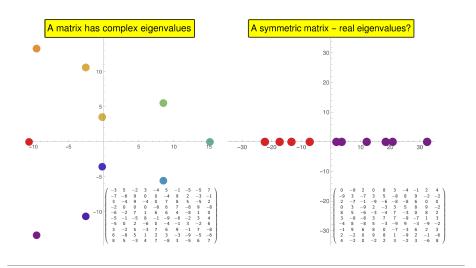
What is...the spectral theorem?

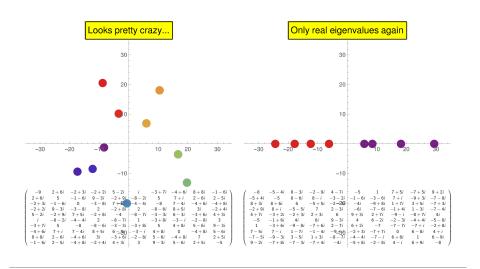
Or: My eigenvalues are real!

A real matrix has complex eigenvalues, but...



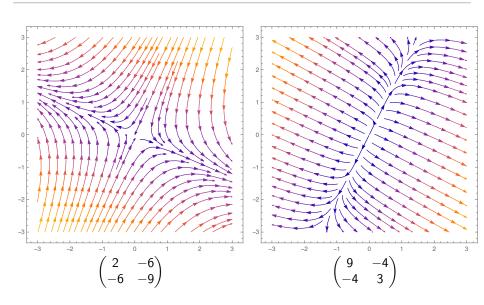
The difference? The right matrix is real symmetric $M = M^T$

And the complex case?



The difference? The right is its own conjugate transpose $M = \overline{M^T}$

Wow, the eigenvectors are orthogonal



For completeness: A formal statement

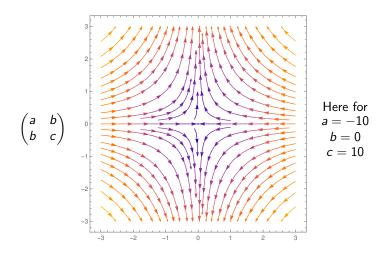
If $M \colon V \to V$ is an Hermitian operator, then M has only real eigenvalues and there exists an orthonormal basis of V consisting of eigenvectors of A. Thus, M is diagonalizable with real eigenvalues

Important facts:

- (a) For $V = \mathbb{R}^n$ with standard inner product Hermitian means $M = M^T$ Symmetric
- (b) For $V = \mathbb{C}^n$ with standard inner product Hermitian means $M = \overline{M^T}$ Conjugate transpose
- (c) A variant also works for infinite-dimensional vector spaces

 Compact self-adjoint operators

Spectral changes happen continuously



- ▶ For b = 0 the matrix is diagonal
- ▶ The orthogonal system changes continuously

Thank you for your attention!

I hope that was of some help.