What is...a vector space?

Or: Geometry à la Descartes.

First example - arrows

Second example - matrices

A collection of matrices over
$$\mathbb R$$
 and 2x2 $M=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ or $N=\begin{pmatrix}-1&1\\2&1/2\end{pmatrix}$ or... Yes, this is a vector space – 2x2 matrices

We can scale matrices:
$$5 \cdot M = \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix}$$
 or $-1 \cdot N = \begin{pmatrix} 1 & -1 \\ -2 & -1/2 \end{pmatrix}$ or...

We can add (and subtract) matrices:
$$M+N=\begin{pmatrix} 0 & 3 \\ 5 & 9/2 \end{pmatrix}$$
 or $M-N=\begin{pmatrix} 2 & 1 \\ 1 & 7/2 \end{pmatrix}$ or...

Third example – polynomials

A collection of polynomials over $\mathbb R$ and in X

$$P = X^2 + 5X$$
 or $Q = -10X^3 + 2$ or...

Yes, this is a vector space – $\mathbb{R}[X]$

We can scale polynomials:
$$5 \cdot P = 5X^2 + 25X$$
 or $-1 \cdot Q = 10X^3 - 2$ or...

We can add
$$P+Q=$$
 $P-Q=$ or $10X^3+X^2+5X+2$ or $10X^3+X^2+5X-2$

For completeness: A formal definition.

A vector space V (over some field \mathbb{K}) is a set, whose elements are called vectors, together with two operations:

- ▶ Scalar multiplication $\lambda \cdot v$ of vectors $v \in V$ by a scalar $\lambda \in \mathbb{K}$
- ▶ Addition (and subtraction) v + w of vectors $v, w \in V$

These operations should satisfy:

Associativity	(v+w)+x=v+(w+x)
Commutativity	v + w = w + v
Identity 1	$\exists 0$ such that $v + 0 = v = 0 + v$
Inverses	$\exists -v$ such that $v+(-v)=0=(-v)+v$
Compatibility	$(\lambda\mu)\cdot v = \lambda\cdot (\mu\cdot v)$
Identity 2	$1 \cdot v = v$
Distributivity 1	$\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$
Distributivity 2	$(\lambda + \mu) \cdot \mathbf{v} = \lambda \cdot \mathbf{v} + \mu \cdot \mathbf{v}$

Vector spaces can be tiny or huge

$$\begin{array}{ll} \text{2x2 matrices} & \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right. \\ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\} \end{array}$$
 Only 16 elements

Functions
$$(f+g)(x) = f(x) + g(x)$$
 Infinite $f: \mathbb{R} \to \mathbb{R}$ $(\lambda \cdot f)(x) = \lambda f(x)$ dimensional

Thank you for your attention!

I hope that was of some help.