What is...the edge expansion constant?

Or: The second largest - part 2

- Given a subset S of the vertices of G
- Cut edges until S and $G \backslash S$ are disconnected
- Denote that number by ∂S ("boundary of S ")

Fair cuts

- Let $h(G)=\min _{S, 0<|S| \leq n / 2}|\partial S| /|S|$ Edge expansion or Cheeger's constant
- We give $|\partial S|$ the weight $1 /|S|$ to make bigger S more attractive
- Task Compute $h(G)$

- Take two complete graphs K_{n}; above $k=3$
- Connected i vertices one-by-one and get graphs $G_{0}, G_{1}, G_{2}, \ldots, G_{n}$
- Then $h\left(G_{0}\right)=0, h\left(G_{1}\right)=1 / n, h\left(G_{2}\right)=2 / n, \ldots, h\left(G_{n}\right)=n / n=1$

For completeness: A formal statement

For a k-regular graph not K_{1}, K_{2}, K_{3} we have

$$
1 / 2\left(k-\lambda_{2}\right) \leq h(G) \leq \sqrt{k^{2}-\lambda_{2}^{2}}
$$

Here λ_{2} is the second largest eigenvalue

- Expander graphs are:

Definition. A sequence of (non-oriented, finite) graphs $\left(\Gamma_{n}\right)_{n \geq 1}$ is a family of expanding graphs if

- The number of vertices of Γ_{n} tends to infinity as n tends to infinity;
- There exists $k \geq 1$ such that the degree of each vertex of each graph is at most k (the graphs are not too dense);
- There exists $\delta>0$ such that $h\left(\Gamma_{n}\right) \geq \delta$ for all n (the Cheeger constant is uniformly bounded away from zero).

Such graphs are simultaneously sparse and highly connected.

- In this video this means edge expansion but can also use other definitions
- Expanders became famous because of their role in sorting networks

Expanders

- Not trivial: Do expanders exist ?
- Expanders have many applications so we want many examples (more another time)
- Example Vertices $\{0, \ldots, p($ prime $)-1\}$, connect $a \neq 0$ to $a \pm 1 \bmod p$ and $a^{-1} \bmod p$, and 0 to $0,1, p-1$, gives a family of expanders

Thank you for your attention!

I hope that was of some help.

