What is...the edge expansion constant?

Or: The second largest - part 2

Cutting into two

• Given a subset S of the vertices of G

- Cut edges until S and $G \setminus S$ are disconnected
- Denote that number by ∂S ("boundary of S")

Fair cuts

- ▶ Let $h(G) = \min_{S,0 < |S| \le n/2} |\partial S| / |S|$ Edge expansion or Cheeger's constant
- ▶ We give $|\partial S|$ the weight 1/|S| to make bigger S more attractive
 - ► Task Compute *h*(*G*)

Large $h \iff$ hard to disconnect

▶ Take two complete graphs K_n ; above k = 3

▶ Connected *i* vertices one-by-one and get graphs G_0 , G_1 , G_2 , ..., G_n

▶ Then
$$h(G_0) = 0$$
, $h(G_1) = 1/n$, $h(G_2) = 2/n$, ..., $h(G_n) = n/n = 1$

For completeness: A formal statement

For a k-regular graph not K_1, K_2, K_3 we have

$$1/2(k-\lambda_2) \leq h(G) \leq \sqrt{k^2-\lambda_2^2}$$

Here λ_2 is the second largest eigenvalue

Expander graphs are:

Definition. A sequence of (non-oriented, finite) graphs $(\Gamma_n)_{n\geq 1}$ is a *family of expanding graphs* if

- The number of vertices of Γ_n tends to infinity as *n* tends to infinity;
- ► There exists k ≥ 1 such that the degree of each vertex of each graph is at most k (the graphs are not too dense);
- There exists δ > 0 such that h(Γ_n) ≥ δ for all n (the Cheeger constant is uniformly bounded away from zero).

Such graphs are simultaneously sparse and highly connected.

- In this video this means edge expansion but can also use other definitions
- ▶ Expanders became famous because of their role in sorting networks

Expanders

► Not trivial: Do expanders exist ?

- ▶ Expanders have many applications so we want many examples (more another time)
- Example Vertices $\{0, ..., p(prime) 1\}$, connect $a \neq 0$ to $a \pm 1 \mod p$ and $a^{-1} \mod p$, and 0 to 0, 1, p 1, gives a family of expanders

Thank you for your attention!

I hope that was of some help.