What are...example of spectra?

Or: Let us compute!

- Complete graph $K_{n} \quad$ " $=$ " everything is connected to everything
- Spectrum $S\left(K_{n}\right)=\left\{n-1,(-1)^{n-1}\right\}, \operatorname{PF}$ eigenvector $=(1, \ldots, 1)$
- There are many paths in K_{n}

Spectrum of path graphs

Path graphs P_{n}, for $n \geq 1 \quad$ (also called line graphs)

 Vertex set $V=\{1,2, \ldots, n\}$Edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$
(1)

(2) 3

4 . . .
$P_{6}=\bigcirc \bigcirc$
$P_{7}=$

- Path graph P_{n} " $=$ " a line
- Spectrum $S\left(P_{n}\right)=\{2 \cos (k \pi /(n+1)) \mid k=1, \ldots, n\}$, PF eigenvector $=$ (1, [2], [3], ..., [3], [2], 1) for [a] $=\exp (\pi i /(n+1))^{a}-\exp (\pi i /(n+1))^{-a} / \exp (\pi i /(n+1))^{1}-\exp (\pi i /(n+1))^{-1}$
- There are very few paths in P_{n}

Spectra of small graphs

- $\tau=(1+\sqrt{5}) / 2 \approx 1.62$, and $\rho=(1+\sqrt{17}) / 2 \approx 2.56$, and θ_{i} are the roots of $X^{3}-X^{2}-3 X+1$ with $\theta_{1} \approx 2.17$
- There are not many graphs with PF eigenvalue smaller than 2

For completeness: A formal statement

The spectrum contains a lot of properties of the graph (we have already seen some and will see more!)
The spectrum sometimes even determines the graph

- Cospectral = graphs have the same spectrum
- Not quite perfect but expected Cospectral graphs exist; here is an example:

Fig. 1.2 Two cospectral regular graphs
(Spectrum: 4, 1, $(-1)^{4}, \pm \sqrt{5}, \frac{1}{2}(1 \pm \sqrt{17})$)

A surprising application of the spectrum

- If the spectrum is simple, then the graph automorphisms form a 2-group
- Upshot The spectrum contains information about the graph automorphisms

Thank you for your attention!

I hope that was of some help.

