What is...path counting via eigenvalues?

Or: Paths " $=$ " matrix powers " $=$ " largest eigenvalue

Spectrum of a(n oriented multi)graph

- Spectrum of a matrix " $=$ " the (multi)set of eigenvalues in $\mathbb{C}=\mathbb{R}^{2}$
- Spectrum $S(G)$ of $G \quad$ " $=$ " spectrum of $A(G)$
- Question What does $S(G)$ know about G ?

Spectral patterns

$\{3.50743,1.34522,2.71702,1.3628,2.15418,0.724802,0.51078,1.41901,0.59805,0.94177,0.660077,0.481037,1.29229,0.938406$,
$0.992614,0.696089,1.34923,1.03124,0.896952,0.81209,0.763617,0.305472,1.28443,0 ., 0.812626,1.02427,1.08017,1.77954,0.751953,1.3$

- Leading eigenvalue There is a real biggest eigenvalue $\operatorname{PF}(G)$
- $P F(G)$ has an associated nonnegative eigenvector

The Perron-Frobenius theorem

Let M be an irreducible matrix with entries in \mathbb{N}_{0}. Then:
(a) There exists a unique eigenvalue $p f \in \mathbb{R}_{>0}$ of M whose absolute value is bigger than those of other eigenvalues The leading eigenvalue
(b) Up to scalars, there is a unique eigenvector $P F$ with entries from $\mathbb{R}_{>0}$, and it has eigenvalue pf The leading eigenvector
(c) The only eigenvectors with the same absolute value as $p f$ are on the same circle as $p f$ Symmetry of the eigenvalues

- Irreducible " $=$ " G is connected (otherwise run per connected component)
- Let us see what this implies for path counting!

For completeness: A formal statement

For any (oriented multi)graph G:
\triangleright We have a leading eigenvalue $\operatorname{PF}(G)$ and associated leading left v and right w eigenvectors with $w^{\top} v=1$
\triangleright We have $\lim _{n \rightarrow \infty} A(G)^{n} / P F(G)^{n}=v w^{T}$
Thus, the growth rate of the number of paths is controlled by $\operatorname{PF}(G), v$ and w

- Upshot Linear algebra methods help to count paths!
- We only need to know data associated to $A(G)$ to "count" the number of paths of arbitrary length

$$
\begin{gathered}
P F(G)=5 \\
A(G)^{100} / 5^{100}=1 / 30 \cdot \text { (only } 1 \text { matrix) } \\
v=w=(1, \ldots, 1), w^{T} v=1 / 30
\end{gathered}
$$

The graph case is even a bit better

- $A(G)$ is symmetric for a graph G
- Thus, all eigenvalues are real
- Thus, $v=w$ (up to scaling)

Thank you for your attention!

I hope that was of some help.

