What are...representable matroids 2?

Or: How to rule out matrices

Recognition problems

not representable:

- Linear matroid/representable matroid = obtained from a matrix by taking sets of linearly independent column vectors
- Some matroids are not linear, but how to see this?
- Example The Vámos matroid is not linear - but how can we see this elegantly?

Forbidden strategies

Kuratowski - bottom to top A graph is planar if and only if it does not contain a subgraph which is a subdivision of $K_{3,3}$ or K_{5}

Wagner - top to bottom A graph is planar if and only if it does not contain $K_{3,3}$ or K_{5} as a minor

- One can often check a property by checking for nonexistence of certain forbidden things
- Example For planarity the forbidden graphs are the complete graphs K_{5} and $K_{3,3}$

Question Is there something similar for matroids?

Matroid minor

- Think of a matroid as a graph where "lines $\Leftrightarrow \neg$ basis"
- Deletions and contractions $=$ delete edges or contract edges
- Minor = obtained by a sequence of deletions and contractions

For completeness: A formal statement

Some representability questions can be attacked by searching for forbidden thingies (F):

- Over arbitrary fields we have $\mathrm{F}=U(2,4)$, Fano and dual Fano matroids:

Figure 9: The uniform matroid $U_{2,4}$

Fano:

- For \mathbb{F}_{2} we have $\mathrm{F}=U(2,4)$ matroid

Over any finite field there is also a finite list (this is very difficult to prove)

- Perles configuration $=$ nine points and nine lines in \mathbb{R}^{2} for which every realization has at least one irrational number as a coordinate
- The associated matroid is not representable over \mathbb{Q} but is over \mathbb{R}
- In general, for infinite fields no nice forbidden characterization is possible

Thank you for your attention!

I hope that was of some help.

