What are...representable matroids?

Or: Matrices and matroids

Linear matroids

$B_{1}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}, B_{2}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}, B_{3}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$

- Linear matroid = obtained from a matrix by taking sets of linearly independent column vectors
- Every matrix gives rise to a matroid in this way
- What about the converse ?

A subprogram of linear algebra?

Matroid object Linear algebra theorem

Bases	Every basis of a finite-dimensional vector space has the same size.
Independent sets	Every linearly independent set can be extended to a basis.
Flats	The intersection of subspaces is a subspace.
Flats	The subspaces that cover a given subspace W partition $V-W$.
Rank function	If U and W are subspaces, then $\operatorname{dim}(U)+\operatorname{dim}(W)=\operatorname{dim}(U \cap W)+$ $\operatorname{dim}(U+W)$.

- Representable matroid = a matroid coming from a linear matroid
- Problem A matroid could come from a linear one in some obscure way
- If all matroids a representable, then matroid theory \subset linear algebra

The greedy strategy

- Problem Combinatorial matroids can be representable in a nontrivial way
- Recall Fano matroid with seven points and the bases being the sets of three points that are not illustrated
- Example The Fano matroid is representable $\Leftrightarrow \operatorname{char}($ field $)=2$

Non-representable matroids exist

- It took some time to find an example

Proving that something does not work is difficult

Perko A ($\mathbf{1 0}_{\mathbf{1 6 1}}$)

Perko B ($\mathbf{1 0}_{\mathbf{1 6 2}}$)

- The smallest non-representable matroid is on eight elements

Vámos again

the bases are all non-displayed: ones of size four

- The Vámos matroid is not representable over any field
- "Proof": Assume otherwise, collect equations and show no solution exists
- In general, proving non-representability is a bit painful but more another time

Thank you for your attention!

I hope that was of some help.

