What is...the lattice of flats?

Or: The properties of inclusion

Lattices generalize division and inclusion

Lattice = poset such that every pair (x, y) has a join $x \lor y$ and a meet $x \land y$

• Example $\mathbb{Z}_{\geq 0}$ with division, join=lcm, meet=gcd

Example Sets with inclusion, join= \cup , meet= \cap

Atoms of a lattice

- (Co)Atoms of a lattice = Covers of the least (biggest) element
- Atomic = every element can be written as the join of atoms

Examples Division lattices are mostly not atomic, inclusion lattice often are

The rank again

- Rank = length of a saturated chain
- Saturated = successive elements cover one another
- Example In the Young lattice the rank is the number of boxes

Flats of a matroid form a geometric lattice

► Here is the definition of a matroid using flats :

Theorem 2.52. Let *E* be a finite set and let \mathcal{F} be a family of subsets of *E*. Then the family \mathcal{F} are the flats of a matroid if and only if:

(F1) $E \in \mathcal{F}$. (F2) If $F_1, F_2 \in \mathcal{F}$, then $F_1 \cap F_2 \in \mathcal{F}$. (F3) If $F \in \mathcal{F}$ and $\{F_1, F_2, \dots, F_k\}$ is the set of flats that cover F, then $\{F_1 - F, F_2 - F, \dots, F_k - F\}$ partition E - F.

Geometric lattice = lattice + atomic + $(rk(x \lor y) + rk(x \land y) \le rk(x) + rk(y))$

Example In a linear matroid flats are linear subspaces (lines, planes, *etc.*)

The axiom (F3)

Geometric motivation for (F3) = given a line in ℝ³, the planes that contain this line partition the rest of ℝ³

► There are infinitely many such planes, but its a pain to illustrate that many planes ;-)

Thank you for your attention!

I hope that was of some help.