What is...the lattice of flats?

Or: The properties of inclusion

Lattices generalize division and inclusion

- Lattice $=$ poset such that every pair (x, y) has a join $x \vee y$ and a meet $x \wedge y$
- Example $\mathbb{Z}_{\geq 0}$ with division, join=lcm, meet=gcd
- Example Sets with inclusion, join $=\cup$, meet $=\cap$

Atoms of a lattice

- (Co)Atoms of a lattice $=$ Covers of the least (biggest) element
- Atomic $=$ every element can be written as the join of atoms

Examples Division lattices are mostly not atomic, inclusion lattice often are

The rank again

- Rank $=$ length of a saturated chain
- Saturated $=$ successive elements cover one another
- Example In the Young lattice the rank is the number of boxes

For completeness: A formal statement

Flats of a matroid form a geometric lattice

- Here is the definition of a matroid using flats :

Theorem 2.52. Let E be a finite set and let \mathcal{F} be a family of subsets of
E. Then the family \mathcal{F} are the flats of a matroid if and only if:
(F1) $E \in \mathcal{F}$.
(F2) If $F_{1}, F_{2} \in \mathcal{F}$, then $F_{1} \cap F_{2} \in \mathcal{F}$.
(F3) If $F \in \mathcal{F}$ and $\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ is the set offlats that cover F, then $\left\{F_{1}-F, F_{2}-F, \ldots, F_{k}-F\right\}$ partition $E-F$.

- Geometric lattice $=$ lattice + atomic $+(r k(x \vee y)+r k(x \wedge y) \leq r k(x)+r k(y))$
- Example In a linear matroid flats are linear subspaces (lines, planes, etc.)

The axiom (F3)

- Geometric motivation for (F3) = given a line in \mathbb{R}^{3}, the planes that contain this line partition the rest of \mathbb{R}^{3}
- There are infinitely many such planes, but its a pain to illustrate that many planes ;-)

Thank you for your attention!

I hope that was of some help.

