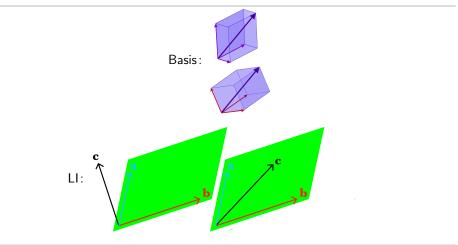
What are...cryptomorphisms?

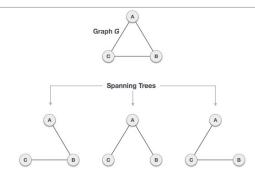
Or: Many definitions = good!

Cryptomorphisms



- Cryptomorphism = "equivalent and not straightforward way to define matroids"
- **Example** We have seen definitions via bases and linear independent (LI) sets
- **Today** A point of matroid theory is that there are many cryptomorphisms

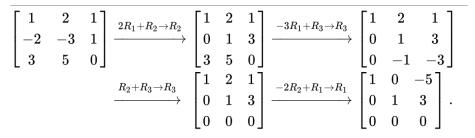
Circuits



- Circuit = dependent (D= \neg LI) set with all proper subsets being LI
- Circuits are the obstructions for sets to be bases
- ▶ Here is the definition of matroids using circuits :

Non-triviality (C1) $\emptyset \notin C$; Clutter (C2) if $C_1, C_2 \in C$ and $C_1 \subseteq C_2$, then $C_1 = C_2$; Circuit elimination (C3) if $C_1, C_2 \in C$ with $C_1 \neq C_2$, and $x \in C_1 \cap C_2$, then $C_3 \subseteq C_1 \cup C_2 - x$ for some $C_3 \in C$.

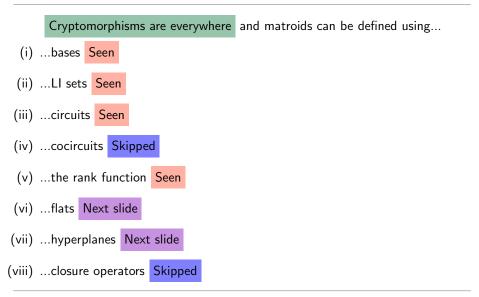
Rank



- Rank of $A \subset E$ = size of the largest LI subset of A
- ▶ Sets are LI \Leftrightarrow full rank
- Here is the definition of matroids using the rank :

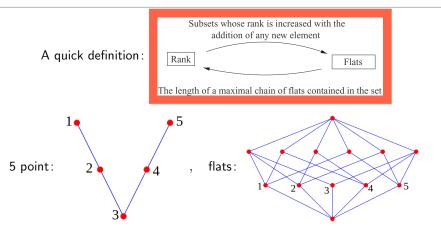
Theorem 2.15. Let *E* be a finite set with an integer-valued function *r* defined on subsets of *E*. Then *r* is the rank function of a matroid if and only if for $A, B \subseteq E$:

 $\begin{array}{ll} \text{Normalization} & (r1) & 0 \leq r(A) \leq |A|; \\ \text{Increasing} & (r2) & if A \subseteq B, then r(A) \leq r(B); \\ \text{Semimodular} & (r3) & r(A \cup B) + r(A \cap B) \leq r(A) + r(B). \end{array}$



All of these have then interpretations in linear algebra, graph theory, geometry, combinatorics,... and all are equivalent

Flats



- ▶ From geometry: flat = if you add anything new to a flat, its rank increases
- Hyperplanes = maximal flats that are not the entire matroid
- Example For an affine matroid (E is a subset of affine space and LI = usual LI) flats are the intersections of E with affine subspaces

Thank you for your attention!

I hope that was of some help.