What are...linearly independent sets?

Or: All bases are of the same size

Linear independence (LI)

- Matroids generalize bases of vector spaces
- Bases are maximal with respect to linear independence
- Task Define linear independence for matroids

Linear matroids and LI
$\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0\end{array}\right]$

- In a linear matroid LI is what you think it is
- Example We have for example $\{a, c, e\}$ and $\{c, e\}$ are linearly independent
- The maximal ones are bases, for example $\{a, c, e\}$ is a basis

Graphic matroids and LI

- In a graphic matroid LI is a set of edges "having no cycle"
- Example We have, for example, the linear independent sets above
- The maximal ones are spanning forest (= touching all vertices), for example the right one is a spanning forest

For completeness: A formal statement

A matroid is a pair (E, \mathfrak{I}) of a finite set E and LI sets $\mathfrak{I} \subset \mathfrak{P}(E)$ such that:
(i) \mathfrak{I} is not empty Existence of LI sets
(ii) For $I \subset J$ and $J \in \mathfrak{I}$ implies $I \in \mathfrak{I}$, and for $|I|<|J|$ there exists $i \in J \backslash I$ such that $I \cup\{i\} \in \mathfrak{I}$ Vector exchange property

- This definition is equivalent to the basis version; basis $=\max \mathrm{LI}$ set (always of the same size)
- Here is the vector exchange property for a graphic matroid:

A nonlinear and nongraphic example

- Vamos matroid $E=$ the points, $\mathfrak{I}=$ all subsets of points of order <4 and the ones not marked in the picture above
- Bases are the not marked collection of four points
- This example is neither linear nor graphic

Thank you for your attention!

I hope that was of some help.

