What are...colorings of random graphs?

Or: Concentrated colors

Colorings

- Coloring = coloring vertices such that adjacent vertices get different colors
- Chromatic number $\chi(G)=$ minimal number of colors needed for colorings
- Question $\chi(G)$ is terribly difficult to compute, so is there any chance to do this for random graphs, say for $G_{n, 1 / 2}$?

This is very difficult!

- Question Can we get a nice formula for the asymptotics of $\chi\left(G_{n, 1 / 2}\right)$?
- This seemingly innocent question was open for decades in spite of serious efforts

Very concentrated

- Above χ of $250 G_{50,1 / 2}$ and $G_{60,1 / 2}$
- There seems to be a concentration around one or two values $\approx n / 2 \log _{2} n$

For $d=1 /(1-p)$ we have almost all $G_{n, p}$ concentrated in the interval

$$
\chi\left(G_{n, p}\right) \in \frac{n}{2 \log _{d} n}[1+f, 1+3 f]
$$

where we have the following threshold function

$$
f=\log _{2} \log _{2} n / \log _{2} n
$$

- This is saying that $\chi\left(G_{n, p}\right) \approx n / 2 \log _{d} n$
- Also: $\chi\left(G_{n, p}\right)$ is concentrated in some interval, depending on n, p
- Here is a plot for $p=1 / 2$ of the threshold function

Compare with $c\left(G_{n, p}\right)$

- The interval on the previous page is quite large, see above
- For the clique number $c\left(G_{n, p}\right)$ we have seen the same phenomena and got a much better statement
- For χ one expects a better statement but this is/seems open

Thank you for your attention!

I hope that was of some help.

