What are...cliques in random graphs?

Or: Peaks!

Complete subgraphs

A graph with

- 23×1-vertex cliques (the vertices),
- 42×2-vertex cliques (the edges),
- 19×3-vertex cliques (light and dark blue triangles), and
- 2×4-vertex cliques (dark blue areas).
- Clique $=$ subset of adjacent vertices $=$ complete subgraph
- Maximal clique $=$ clique that cannot be increased
- Clique number $c l(G)=$ size of a maximal clique

Two values?

- Above Clique number of $10000 G_{50,1 / 2}$ and $G_{100,1 / 2}$
- There seems to be a concentration around one or two values

Or rather one value!

- Above Clique number of $10000 G_{200,1 / 2}$
- There seems to be a peak at one value

For all $\varepsilon>0$ we have the probability

$$
\lim _{n \rightarrow \infty} P\left(\lfloor f-\varepsilon\rfloor \leq c l\left(G_{n, p}\right) \leq\lfloor f+\varepsilon\rfloor\right)=1
$$

where we have the following threshold function

$$
f=2 \log _{1 / p}(n)-2 \log _{1 / p} \log _{1 / p}(n)+\log _{1 / p}(e)+1
$$

- This is saying that $c l\left(G_{n, p}\right) \approx 2 \log _{1 / p}(n)$
- Also: $c l\left(G_{n, p}\right)$ peaks at one or two values, depending on n, p
- Here is a plot for $p=1 / 2$ of the threshold function

Staircases

- For $p=1 / 2$ we have one peak if $n \gg 0$
- $\quad c l\left(G_{n, p}\right)$ has a staircase pattern with longer and longer staircases

Thank you for your attention!

I hope that was of some help.

