What are...subgraphs of random graphs?

Or: A lot of edges

Is your favorite graph a random graph?

- Fix some graph G "Your favorite"
- Question How likely is G a random graph?
- This question is great but also not great - let us reformulate it!

A maybe better question

Subgraph:

Also a subgraph:

- How often does G appear as a subgraph of a random graph?
- Subgraphs $=$ collection of vertices and fitting edges of a parent graph
- Random graph in this video $=G_{n, p}$ (bottom to top) or $G(n, M)$ (top to bottom)

What should we expect?

- Let us stay with $G_{n, p}$ and $p(n)=p$ constant (more general on the next slide)
- $G_{n, p}$ will contain many edges for $n \gg 0$
- In this case G should appear almost surely

Suppose that for every $\epsilon>0$ we have
(1) $\lim _{n \rightarrow \infty} p(n) n^{\epsilon}=\infty$ and $\lim _{n \rightarrow \infty}(1-p(n)) n^{\epsilon}=\infty$ Bottom to top
(2) $\lim _{n \rightarrow \infty} M(n) n^{\epsilon-2}=\infty$ and $\lim _{n \rightarrow \infty}\left(\binom{n}{2}-M(n)\right) n^{\epsilon-2}=\infty$ Top to bottom The every G appears almost always in $G_{n, p}$ or $G(n, M)$

- Recall: almost always \neq always!

- The conditions (1) and (2) are quite often satisfied

Slogan: many edges!

- "Real takeaway" Most graphs have many edges
- (Wannabe) consequence Almost all graphs have all properties that are easy to satisfy with many edges - we will explore that!
- Example Almost all graphs are Hamiltonian; above "Hamil/all"

Thank you for your attention!

I hope that was of some help.

