What are...random graph models?

Or: Different, yet the same

Top to bottom $G(n, M)$

- Let us fix the number of vertices n, M
- Take the complete graph K_{n} and the set=bag of its subgraphs with M edges
- Every subgraph is equally likely drawn, by convention

- Let us fix the number of vertices n and a probability p
- Take the empty graph and run through pairs for vertices $v \neq w$
- Put an edge with probability p

Evolution \mathcal{G}_{n}

- Let us fix the number of vertices n
- \mathcal{G}_{n} has sequences $G_{0} \subset G_{1} \subset \ldots$ of n vertex graph with subscript many edges
- Every sequence is equally likely chosen, by convention

For completeness: A formal statement

For $X_{s}=$ complete subgraphs of size s we have expectations (here $N=\binom{n}{2}, S=\binom{s}{2}$):
(1) $\mathbb{E}_{p}\left(X_{s}\right)=\binom{n}{s} p^{S} \quad$ Finding complete graphs in $G_{n, p}$
(2) $\mathbb{E}_{M}\left(X_{s}\right)=\binom{n}{s}\binom{N-S}{M-S}\binom{N}{M}^{-1} \quad$ Finding complete graphs in $G(n, M)$

- $\mathbb{E}_{p}=$ expectation on $G_{n, p} ; \mathbb{E}_{M}=$ expectation on $G(n, M)$
- Every graph invariant on a random graph space becomes a random variable

- The nature of such a random variable depends crucially on the space; well...

Different and equal answers

- The three random graph models are somewhat different
- The three random graph models are somewhat the same

Thank you for your attention!

I hope that was of some help.

