What is...the Tutte polynomial counting?

Or: Its counting a lot!

Tutte counts colorings

▶ Recall that $T_G(x, y)$ specializes to the chromatic polynomial $P_G(x)$

- $P_G(k)$ =number of k-colorings
- ▶ Thus, $T_G(x, y)$ counts colorings

Tutte counts much more

(2,1) [edit]

 $T_{G}(\mathbf{2},\mathbf{1})$ counts the number of forests, i.e., the number of acyclic edge subsets.

(1,1) [edit]

 $T_G(1,1)$ counts the number of spanning forests (edge subsets without cycles and the same number of connected components as G). If the graph is connected, $T_G(1,1)$ counts the number of spanning trees.

(1,2) [edit]

 $T_G(1,2)$ counts the number of spanning subgraphs (edge subsets with the same number of connected components as G).

(2,0) [edit]

 $T_G(2,0)$ counts the number of acyclic orientations of G.^[10]

(0,2) [edit]

 $T_G(0,2)$ counts the number of strongly connected orientations of G.^[11]

(2,2) [edit]

 $T_G(2,2)$ is the number $2^{|E|}$ where |E| is the number of edges of graph G.

• $T_G(x, y)$ counts (certain) forests and trees

- $T_G(x, y)$ counts (certain) subgraphs
- $T_G(x, y)$ counts (certain) orientations

$T_G(x, x)$ always counts something

- Medial graph M(G) of a plane graph G = vertices for edges and edges for faces in which their corresponding edges occur consecutively
- ▶ $T_G(a, a)$ for a > 1 counts edge colorings related to M(G)
- ▶ $T_G(a, a)$ for a < 1 counts connected components related to M(G)

▶ Surprising: $T_G(x, y)$ is independent while M(G) depends on the embedding

For completeness: A formal statement $T_G(a, b)$ counts many statistics associated to G 5 Start again! 2 3 •_• •_•

And counting can be hard!

- ► One polynomial to rule count them all!
- Sometimes one can show that T_G(a, b) =count A and T_G(a, b) =count B so that count A=count B, e.g.

anticircuits of $M(G) \iff T_G(3,3) \iff \#$ edge colorings of M(G)

Nonintegral points

▶ G_p = graph obtained from G by keeping edges with probability 0

• $p^{\#V-1}T_G(1+1/p,1) = expectation value of number of forests in G_p$

• At nonintegral points $T_G(x, y)$ is often related to random graphs

Thank you for your attention!

I hope that was of some help.