Or: More counting!



The chromatic polynomial
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» Recall that a way to define the chromatic polynomial was ' deletion-contraction
» Here we kill loops since loops rule out colorings

> Idea| Keep the loops, give them the variable y so that Pg(x,0) = Pg(x)



The Tutte polynomial
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» Here is an |algorithm to compute Pg(x, y) = Tutte polynomial
» Starting condition Pyee(x,y) = x#vertices=1 and Pioop(x,y) =y

» Then use |deletion-contraction : Pg(x,y) = Pg\e(x,y) + Pg/e(x,y)



Ok, this one is a bit annoying...
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The chromatic polynomial o
drawn in the Tutte plane

» What one should keep in mind is _

» However, that is not quite correct
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For completeness: A formal statement

There exists a |polynomial T¢(x,y) associated to a graph such that:
Tc(2,1) = # forests
Ts(1,1) = # spanning forests
T¢(1,2) = # spanning subgraphs

More...

The polynomial is called Tutte polynomial
Also we have the specialization “chromatic(x) = Tutte(x,0)", and -
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Tutte knows knots
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» Step 1 Checkerboard color and alternating knot K
» Step 2 Create the dual graph G(K)

» Step 3 Pg(k)(—x,—1/x) is the Jones polynomial of K up to scaling



| hope that was of some help.



