What is...the chromatic polynomial?

Or: Polynomials and colors

Counting colorings

- Coloring $=$ vertices get colors such that two adjacent vertices have different colors
- Let $P_{G}(k)=$ number of k-colorings of G (colorings using k colors)
- Question How are the $P_{G}(k)$ related?

edgeless: x^{3}
one edge: $x^{2}(x-1)$

$$
\text { line: } x(x-1)^{2}
$$

circle: $x(x-1)(x-2)$

- For $G=\bullet \bullet$ we have a polynomial giving $P_{G}(k)$, namely $P_{G}(x)=x^{3}$
- For other small graphs one checks that the same works
- Question Is there a polynomial counting colorings?

Deletion-contraction

- Here is an algorithm to compute $P_{G}(x)$
- Starting condition $P_{\text {tree }}(x)=x(x-1)^{\# \text { vertices-1 }}$ and $P_{\text {loop }}(x)=0$
- Then use deletion-contraction : $P_{G}(x)=P_{G \backslash e}(x)-P_{G / e}(x)$

For completeness: A formal statement

There exists a polynomial $P_{G}(x)$ associated to a graph such that:

$$
P_{G}(k)=\# k \text {-colorings }
$$

- The polynomial is called chromatic polynomial
- The polynomial can be computed by deletion-contraction
- However, the runtime is quite bad: $\approx \phi^{\# \text { vertices }+\# e d g e s ~} ; \phi=$ golden ratio

Whatever "easy" means

- Recall that graph polynomials are for easy problems
- The runtime for $P_{G}(x)$ is horrible, so how can that be easy?
- This is easy in the sense that we get all colorings at once

Thank you for your attention!

I hope that was of some help.

