What is...the chromatic polynomial?

Or: Polynomials and colors

Counting colorings

- ► Coloring = vertices get colors such that two adjacent vertices have different colors
- ▶ Let $P_G(k)$ =number of k-colorings of G (colorings using k colors)
 - Question How are the $P_G(k)$ related?

3 vertex graph

edgeless:
$$x^3$$

one edge: $x^2(x-1)$
line: $x(x-1)^2$
circle: $x(x-1)(x-2)$

▶ For $G = \bullet \bullet \bullet$ we have a polynomial giving $P_G(k)$, namely $P_G(x) = x^3$

- ► For other small graphs one checks that the same works
 - Question Is there a polynomial counting colorings?

Deletion-contraction

▶ Here is an algorithm to compute $P_G(x)$

• Starting condition $P_{tree}(x) = x(x-1)^{\#vertices-1}$ and $P_{loop}(x) = 0$

► Then use deletion-contraction : $P_G(x) = P_{G \setminus e}(x) - P_{G/e}(x)$

For completeness: A formal statement

There exists a polynomial $P_G(x)$ associated to a graph such that:

 $P_G(k) = \#k$ -colorings

- The polynomial is called chromatic polynomial
- ► The polynomial can be computed by deletion-contraction

▶ However, the runtime is quite bad: $\approx \phi^{\#vertices+\#edges}$; $\phi=$ golden ratio

Whatever "easy" means

- ► Recall that graph polynomials are for easy problems
- ▶ The runtime for $P_G(x)$ is horrible, so how can that be easy?
- ▶ This is easy in the sense that we get all colorings at once

Thank you for your attention!

I hope that was of some help.