What are...clustering methods?

Or: Partitioning made easy

Analyzing data

▶ Given a large data set, one often wants to cluster it

- ▶ This means one wants to minimize the distance from (to be found) k centers
- ▶ There are good algorithms to do this in \mathbb{R}^m (not optimal, but good)

Clustering in graphs

- ▶ If the data is given as a graph, one can compute eigenvectors
- ▶ Let $u_1, ..., u_m$ be the eigenvectors for the smallest Laplace eigenvalues

▶ Assign vertex x to $(u_i(x))_i$ and run an (\mathbb{R}^m, k) cluster algorithm

Back to cutting

Fig. 3.2 Graph with 2nd Laplace eigenvector

For G = (V, E) suppose $W \subset V$ is such that the induced subgraph on $V \setminus W$ is disconnected, then:

- μ_{-2} = second smallest Laplace eigenvalue also called algebraic connectivity
- ▶ Induced subgraph = take all edges that make sense, *e.g.*:

► For the clustering algorithm I can only offer "it works well" – so take the above as a justification why one could expect it to work well

Algebraic connectivity

▶ The Petersen graph has $\mu_{-2} = 2$

▶ Removing an arbitrary vertex will not disconnect the graph

▶ The lower bound 2 is however not optimal (but we should not expect that anyway)

Thank you for your attention!

I hope that was of some help.