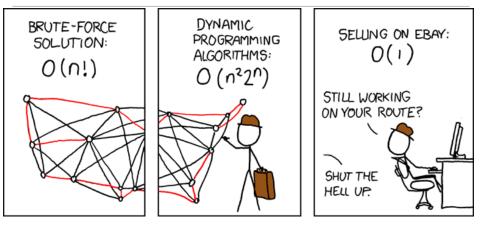
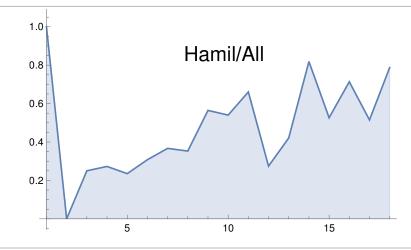

What is...spectral Hamiltonicity?


Or: The second largest - part 3

Hamiltonian graphs

- ► Hamiltonian cycle = a cycle that visits every vertex exactly once
- Hamiltonian graph = a graph with an Hamiltonian cycle
 - Question How can we check whether a graph Hamiltonian?


Very difficult

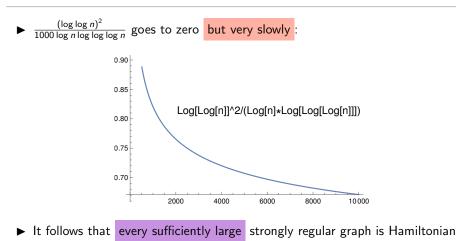
(This is the traveling salesperson problem.)

- ► Hamiltonian graph was one of the first problems shown to be NP-complete
- ▶ NP-complete "=" can't do much better than brute force
- ▶ Dynamic programming algorithms solves this is roughly in $O(n^2 2^n)$, n = #V

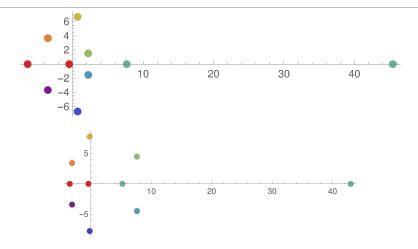
But almost all graphs are Hamiltonian!

▶ To determine precisely whether a graph is Hamiltonian is difficult

► To determine approximately whether a graph is Hamiltonian is easy


► Idea Maybe the spectrum helps to prove Hamiltonian for large enough graphs

For completeness: A formal statement



 $\lambda_2/\lambda_1 < \frac{(\log\log n)^2}{1000\log n\log\log\log n}$

is Hamiltonian

 λ_2 is rather small

- ▶ "Very often" $\lambda_2 < 2\sqrt{\lambda_1 1} + \varepsilon$
- ▶ Thus, λ_2 is "very often" tiny compared to λ_1

▶ Checking e.g. $\lambda_2/\lambda_1 < 2/n^{1/10}$ for some graphs then implies that they are Hamiltonian

Thank you for your attention!

I hope that was of some help.