What is...the Zariski topology in algebra?

Or: From topology to algebra

Reminder: Zariski topology

Zariski topology = closed sets are varieties (small)

Zariski topology = open sets are complements of varieties (large)

Today A translation to algebra

Some topological notions make sense...

► Irreducible = opposite of: A topological space X is reducible if $X = Y \cup Z$ for closed nontrivial spaces Y, Z

• Connected = opposite of: A topological space X is disconnected if $X = Y \cup Z$ for closed nontrivial spaces Y, Z with $Y \cap Z = \emptyset$

Back to algebra

► One mild catch: the above are order reversing

• Coordinate ring $= \mathbb{K}[V] = \mathbb{K}[x_1, ..., x_n]/I(V)$

• The point We pass information between V (geometry) and $\mathbb{K}[V]$ (algebra)

• Question What does the Zariski topology and its properties look like in $\mathbb{K}[V]$?

We have translations from geometry to algebra (for \mathbb{K} algebraically closed) (i) $V = W \cup U$ disconnected $\Rightarrow \mathbb{K}[V] \cong \mathbb{K}[W] \times \mathbb{K}[U]$

- (ii) $V \neq \emptyset$ irreducible $\Leftrightarrow \mathbb{K}[V]$ is an integral domain
- (iii) We have a 1:1 correspondence

 $\{\text{irreducible varieties} \neq \emptyset\} \stackrel{1:1}{\longleftrightarrow} \{\text{prime ideals}\}$

(iv) We have a 1:1 correspondence

{irreducible components of V} $\stackrel{1:1}{\longleftrightarrow}$ {minimal prime ideals in $\mathbb{K}[V]$ }

(v) More... We will explore this!

The picture is deceiving...

► The above variety is irreducible

- ▶ WTF? The problem is the real picture here: work over ℂ!
- Why? Check that $(x^3-2.7x-0.7y^2-0.3)$ is prime (not too difficult)

Thank you for your attention!

I hope that was of some help.