What is...the Zariski topology in algebra?

Or: From topology to algebra

Reminder: Zariski topology

- Zariski topology = closed sets are varieties (small)
- Zariski topology = open sets are complements of varieties (large)
- Today A translation to algebra

Some topological notions make sense...

- Irreducible $=$ opposite of: A topological space X is reducible if $X=Y \cup Z$ for closed nontrivial spaces Y, Z
- Connected = opposite of: A topological space X is disconnected if $X=Y \cup Z$ for closed nontrivial spaces Y, Z with $Y \cap Z=\emptyset$

Back to algebra

Identifying varieties and ideals

- We have bijections

$$
\begin{gathered}
\{\text { varieties }\} \stackrel{1: 1}{\longleftrightarrow} \text { \{radical ideals }\} \\
X \mapsto I(X) \\
V(P) \leftrightarrow P
\end{gathered}
$$

- Radical ideal means $I=\sqrt{I}$
- One mild catch: the above are order reversing
- Coordinate ring $=\mathbb{K}[V]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / I(V)$
- The point We pass information between V (geometry) and $\mathbb{K}[V]$ (algebra)
- Question What does the Zariski topology and its properties look like in $\mathbb{K}[V]$?

We have translations from geometry to algebra (for \mathbb{K} algebraically closed)
(i) $V=W \cup U$ disconnected $\Rightarrow \mathbb{K}[V] \cong \mathbb{K}[W] \times \mathbb{K}[U]$
(ii) $V \neq \emptyset$ irreducible $\Leftrightarrow \mathbb{K}[V]$ is an integral domain
(iii) We have a $1: 1$ correspondence

$$
\{\text { irreducible varieties } \neq \emptyset\} \stackrel{1: 1}{\longleftrightarrow} \text { \{prime ideals }\}
$$

(iv) We have a $1: 1$ correspondence
$\{$ irreducible components of $V\} \stackrel{1: 1}{\longleftrightarrow}$ \{minimal prime ideals in $\mathbb{K}[V]\}$
(v) More... We will explore this!

The picture is deceiving...

- The above variety is irreducible
- WTF? The problem is the real picture here: work over \mathbb{C} !
-Why? Check that $\left(x^{3}-2.7 x-0.7 y^{2}-0.3\right)$ is prime (not too difficult)

Thank you for your attention!

I hope that was of some help.

