What is...the coordinate ring?

Or: Polynomial functions and varieties

From geometry to algebra

- Difficult object \mapsto easier object (with potential information loss) is a successful strategy in general
- Question What is a "good" object associated to a variety?
- We have already seen varieties $\leadsto \rightarrow$ ideals; time for the next step

The same function on V ?

- Observation Some polynomials are very different, but agree on some variety
- Example Above we have a polynomial f and polynomial g and how they evaluate on $V=V\left(x^{2}+y^{2}-1\right)$

The same function on V !

- Not difficult f and g define the same polynomial on $V \Leftrightarrow f-g \in I(V)$
- Example Above is $f-g$ for f and g as before

For completeness: A formal statement

The coordinate ring associated to an affine variety V is

$$
\mathbb{K}[V]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / I(V)
$$

$I(V)$ is the ideal associated to V, \mathbb{K} is the underlying field Then:

$$
\mathbb{K}[V] \underset{\text { identified }}{\stackrel{\text { can be }}{\leftrightarrows}} \text { polynomials } V \rightarrow \mathbb{K}
$$

- $\mathbb{K}[V]$ is a \mathbb{K}-algebra but usually called "ring"
- This is a relative version of: If $V=\mathbb{K}^{n}$, then $\mathbb{K}[V]=$ all polynomials
- Relative Nullstellensatz holds, e.g.
- We have bijections

$$
\begin{aligned}
& \text { Sub } \text { in } \mathbb{K}[Y] \\
&\text { varieties }\} \stackrel{1: 1}{\longleftrightarrow}\left\{\text { radical ideals } \frac{5}{4}\right. \\
& X \mapsto I(X) \\
& V(P) \leftrightarrow P
\end{aligned}
$$

blue: $x^{2}+y^{2}+z^{2}-1=0$ green: $z=0$

- Above The circle ("equator") is a subvariety of the sphere and the plane
- Coordinate rings $\mathbb{K}[x, y, z] /\left(x^{2}+y^{2}+z^{2}-1\right)$ (sphere) and $\mathbb{K}[x, y]$ (plane)
- The circle equation $x^{2}+y^{2}-1=0$ gives ideals in both

Thank you for your attention!

I hope that was of some help.

