What is...Hilbert's Nullstellensatz?

Or: The zero-locus-theorem

V and I

- Recall, we had varieties and ideals:
$V=V(P)=\left\{v \in \mathbb{K}^{n} \mid f(v)=0 \forall f \in P\right\} \quad I=I(X)=\left\{f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \mid f(v)=0 \forall v \in X\right\}$
- $V(I(X))=X$ is fairly easy to see
- Question What about the converse?

Varieties and powers

- Observation The vanishing sets of f and f^{n} are the same
- Example Above we have a (very low resolution :-)) hyperbola given by $\left(1 / 3 x^{2}-1 / 2 x y-1 / 2 y^{2}-0.1\right)^{1}$ or $3=0$
- Mild catch This really needs the complex numbers

Real plots get now a bit tricky

- Above The level sets of f and f^{2}
- Observation Up scaling, $f=a$ and $f^{2}=a$ agree for $a>0$ but not for $a \leq 0$
- Idea We probably want to work with complex numbers instead

For completeness: A formal statement

We have Hilbert's Nullstellensatz:

(i) $V(I(X))=X$ An inverse
(ii) $I(V(P))=\sqrt{P}$ Almost an inverse

Here our ground field is algebraically closed (e.g. $\mathbb{K}=\mathbb{C}$)

- $\sqrt{P}=\left\{f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \mid f^{k} \in P\right.$ for some $\left.k \in \mathbb{N}\right\}$ is the so-called radical
- The name comes from the old word for root:

Identifying varieties and ideals

- We have bijections

$$
\begin{gathered}
\{\text { varieties }\} \stackrel{1: 1}{\longleftrightarrow}\{\text { radical ideals }\} \\
X \mapsto I(X) \\
V(P) \leftrightarrow P
\end{gathered}
$$

- Radical ideal means $I=\sqrt{I}$
- One mild catch: the above are order reversing

Thank you for your attention!

I hope that was of some help.

