What is...Hilbert's Nullstellensatz?

Or: The zero-locus-theorem

V and I

▶ Recall, we had varieties and ideals :

 $V = V(P) = \{ v \in \mathbb{K}^n \mid f(v) = 0 \forall f \in P \} \quad I = I(X) = \{ f \in \mathbb{K}[x_1, ..., x_n] \mid f(v) = 0 \forall v \in X \}$

•
$$V(I(X)) = X$$
 is fairly easy to see

Question What about the converse?

Varieties and powers

• Observation The vanishing sets of f and f^n are the same

- Example Above we have a (very low resolution :-)) hyperbola given by $(1/3x^2 1/2xy 1/2y^2 0.1)^{1 \text{ or } 3} = 0$
- Mild catch This really needs the complex numbers

Real plots get now a bit tricky

Above The level sets of f and f^2

- Observation Up scaling, f = a and $f^2 = a$ agree for a > 0 but not for $a \le 0$
- Idea We probably want to work with complex numbers instead

We have Hilbert's Nullstellensatz :

(i) V(I(X)) = X An inverse

(ii) $I(V(P)) = \sqrt{P}$ Almost an inverse

Here our ground field is algebraically closed (e.g. $\mathbb{K}=\mathbb{C})$

▶ $\sqrt{P} = \{f \in \mathbb{K}[x_1, ..., x_n] \mid f^k \in P \text{ for some } k \in \mathbb{N}\}$ is the so-called radical

▶ The name comes from the old word for root:

Identifying varieties and ideals

► We have bijections

 $\begin{aligned} \{\text{varieties}\} & \stackrel{1:1}{\longleftrightarrow} \{\text{radical ideals}\}\\ X & \mapsto I(X)\\ V(P) & \leftarrow P \end{aligned}$

• Radical ideal means $I = \sqrt{I}$

▶ One mild catch: the above are order reversing

Thank you for your attention!

I hope that was of some help.