What are...ideals of sets?

Or: Enter, algebra!

Algebraic operations on V

- Recall $V=V(P)=$ the points that are roots of all polynomials in P
- P gets smaller $u \rightarrow V$ gets bigger :

$$
\begin{gathered}
P \subset Q \Rightarrow V(P) \supset V(Q) \\
V(P \cup Q)=V(P) \cap V(Q) \\
V(P Q)=V(P) \cup V(Q)
\end{gathered}
$$

- This property is sometimes called
contravariant

- Observation If f vanishes on X, then so does $h f$ for any h
- Example Above we have $V(f)$ and $V(h f)$ for certain f and h
- Recall $V(P \cup Q)=V(P) \cap V(Q)$
- So above $V(f)=V(f, h f)$
- Idea $V(P)=V(<P>) \Rightarrow$ study ideals associated to varieties and vice versa

Addition is a bit of a weird operation...

- Observation If f and g vanish on X, then so do $f+g$
- Example Above we have $V(f+g)$ and $V(f, g, f+g)$ for certain f and g
- Recall $V(P \cup Q)=V(P) \cap V(Q)$
- So above $V(f, g)=V(f, g, f+g)$
- Idea $V(P)=V(<P>) \Rightarrow$ study ideals associated to varieties and vice versa

For completeness: A formal statement

$$
\begin{gathered}
\text { The ideal of } X \text { is } \\
I=I(X)=\left\{f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \mid f(v)=0 \forall v \in X\right\}
\end{gathered}
$$

where:
(i) \mathbb{K} is some field
(ii) $X \subset \mathbb{K}^{n}$ is a collection of points

- I is an ideal in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and the "inverse" of V : morally true: $V(I(X))=X$ and $I(V(P))=P$

We will see the correct statement in another video

- We finally see the first main flavor of algebraic geometry:

Another take on $V(f, g)$ (two different examples)

- $V(f)$ is green above; $V(g)$ is red above; $V(f, g)$ is blue above
- The two blue varieties are the same, the two green and red ones are different
- This corresponds to that ideals can have different generators

Thank you for your attention!

I hope that was of some help.

