What are...conic sections?

Or: Light cones and walls

Enter: the flashlight

- Conic section = whatever you get by pointing a flashlight towards a wall
- Three types: Ellipse (includes circle), parabola and hyperbola
- This is known since at least 300 BC (except the flashlight part)

The more classical way

Parabola

Ellipse

Circle

Hyperbola

Point

Line

Crossed Lines

- Classical way $=$ "How the old Greeks would have done it"
- Up to degenerate cases, conic sections are ellipse, parabola, hyperbola
- What does with have to do with algebraic geometry?

Degree two


```
        {y, -2, 2}, ContourStyle }->\mathrm{ Thickness[0.01]];
```

Inf-1:- $\operatorname{Conic}[1 / 2,1,1 / 2,0,1,-1]$

- Generic equation of degree two

$$
\text { (*) } A \cdot x^{2}+B \cdot x y+C \cdot y^{2}+D \cdot x+E \cdot y+F=0
$$

Example The circle is $x^{2}+y^{2}-1=0$, so $(A, B, C, D, E, F)=(1,0,1,0,0,-1)$

For completeness: A formal statement

The affine varieties of degree two are precisely the conic sections
(All of this up to degeneration)

- The conic matrix:

$$
\begin{gathered}
M=\left(\begin{array}{ccc}
A & B / 2 & D / 2 \\
B / 2 & C & E / 2 \\
D / 2 & E / 2 & F
\end{array}\right) \\
M_{12}=\left(\begin{array}{cc}
A & B / 2 \\
B / 2 & C
\end{array}\right)
\end{gathered}
$$

- Then $V(*)$ is degenerate if and only if $\operatorname{det} M=0$
- If $\operatorname{det} M \neq 0$, then:
- $V(*)$ is an ellipse if $\operatorname{det} M_{12}>0$
- $V(*)$ is a parabola if $\operatorname{det} M_{12}=0$
- $V(*)$ is a hyperbola if $\operatorname{det} M_{12}<0$

The degenerate cases

- Sometimes the defining equation $\left({ }^{*}\right)$ factors
- Example $x^{2}-y^{2}=0$ factors as $(x-y)(x+y)=0$
- $\left(^{*}\right)$ factors over \mathbb{C} if and only if $V(*)$ is degenerate

Thank you for your attention!

I hope that was of some help.

