What are...algebraic varieties?

Or: Zeros!

Zero sets

Quadratic Formula

Not too exciting for us: $\quad a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x^{2}+y^{2}-R=0
$$

- Algebraic geometry (AG) studies zero sets of polynomials (usually many variables!)
- Not so much of interest in AG are formulas to find roots
- We are rather interested in the shape of these zero sets

Degree one

$\ln [5]:=\operatorname{ContourPlot} 3 \mathrm{D}[x-y+z=0,\{x,-2,2\},\{y,-2,2\}$, $\{z,-2,2\}$, ContourStyle \rightarrow Thickness [0.01]]

- Degree of an equation Highest exponent of the appearing variables (taking sums of different variable exponents so that $x y^{2}$ is of degree 3)
- Degree zero $=$ constants (ignore), Degree one $=$ linear things (lines, planes, etc.)

Degree two

- Degree two $=$ conic sections
- Example The circle is $x^{2}+y^{2}-1=0$

For completeness: A formal statement

$$
\begin{gathered}
\text { An affine variety is } \\
V=\left\{v \in \mathbb{K}^{n} \mid f(v)=0 \forall f \in P\right\} \\
\text { where: }
\end{gathered}
$$

(i) \mathbb{K} is some field
(ii) $P \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is a collection of polynomials

- For $\mathbb{K}=\mathbb{R}$ we can draw nice pictures, but things are a bit ill-behaved

$$
y=x^{2}(x+1) \quad \ln _{\mathbb{R}}
$$

- For $\mathbb{K}=\mathbb{C}$ we cannot draw nice pictures, but things are well-behaved
- There are also projective and abstract varieties but let us not worry about them for now

Matrix varieties

	80	8888	88:8	888	88	88	88	88	80	-8	-8	-8	8		88	8	08	8	88	
88		88.8	88:8	808 08	88	88	88	88	80	88	80	-8	88	88	88	88	-	8	8	
88	88	88		8888	88	88	88	88	88	88	88	88	8	88	88	88	8	$\stackrel{8}{8}$	8	8
88	88	8	8888	88.88	88	88	8	8	88	88	88	88	88	88	88	88	-	8	8	
88	88	888	8	$88: 8$	8	8	$\because 8$	88	88	8	88	8	88	8	88	8	88	8	88	
88	88	888	8	888	8	8	8	8	-8	88	88	88	8	-8	-	8	88	O	8	8
88	88	8888	8888	\%0	88	88	88	8	88	88	88	88	88	88	8.	:8	88	88	88	
-8	8	888	:8:8		88	8	8	8	88	88	88	-8	.	80	-	8	O*	88	\%	
88	88	8888	8888	88.8	88	88	88		88	88	88	88	88	88	88	88	-	88	88	
88	88	$\because 8$.	-8:	$\because 8$	8	88		08	:8	\%	\bigcirc	$0 \cdot$	8	8	-	-	-	-	\bigcirc	
88	88	888	:8\%	888	88		88	88	88	88	88	88	8	8	88	88	88	88	88	
88	88	88	$\because 88$	88		8	88	88	8	88	88	88	8.	88	88	8	88	88	O	
88	88	888	8888	88.8	88	88	88	88	88	88	80		88	88	88	88	- 0	88	8	
80	88	988	8888	88	88	88	88	88	80	8		88	\%	8	88	88	8	88	8	.
\because	$8 \cdot$	888	:8 :8	-8.	88	8	88	88	88		-8.	-8	-8	88	88	88	8	88	-88	
8	-8	88	\% 8	-	88	88	\%	88		8	88	8	8	8	88	8	-	\% 8	8	
88	88	888	$88: 8$	8888	88	88	8	8	88	8	8	88	8	88	88		88	88	88	8
88	88	888	88	888	88	88	-8	8	88	88	88	88	8	88		88	88	88	8	
88	8	$0 \cdot 8$		88.8	88	-8.	88	88	88	8	:8	88	88		8%	$0 \cdot$	88	8	88	
-8	-8	88	-\% : -	88	8	-	:8	88	-8	88	-8	8		80	8%	8	-	88	88	
88	88	8888	808 80	88.	8	8	8	88	88	88	88	88	88	88	8	8	88	8	88	
88	88	8888	8888	8.8	-\%	-8	-8	88	88	88	88	88	88	88	8	8	-	8		
88	88	4888	8888	8888	88	88	88	88	88	88	88	8	88	88	88	88	8		8	
8	88	888	88	8888	88	88	8	8	:8	88	8	8	8	\%	8	88		888	8	

- Special linear group

$$
S L_{n}(\mathbb{K})=\{M \text { a } n \times n \text { matrix } \mid \operatorname{det}(M)=1\}
$$

- By considering entries as variables, $\operatorname{det}\left(_\right)=1$ is a polynomial equation
- $S L_{n}(\mathbb{K})$ is thus an affine variety in $\mathbb{K}^{n^{2}}$

Thank you for your attention!

I hope that was of some help.

