What are...algebraic varieties?

Or: Zeros!

Zero sets

- ► Algebraic geometry (AG) studies zero sets of polynomials (usually many variables!)
- Not so much of interest in AG are formulas to find roots
- ▶ We are rather interested in the shape of these zero sets

Degree one

Degree of an equation Highest exponent of the appearing variables (taking sums of different variable exponents so that xy^2 is of degree 3)

• Degree zero = constants (ignore), Degree one = linear things (lines, planes, etc.)

Degree two

Degree two = conic sections

Example The circle is $x^2 + y^2 - 1 = 0$

 \blacktriangleright For $\mathbb{K}=\mathbb{R}$ we can draw nice pictures, but things are a bit ill-behaved

$$y = x^2(x+1) \iff_{\mathbb{R}}$$

- \blacktriangleright For $\mathbb{K}=\mathbb{C}$ we cannot draw nice pictures, but things are well-behaved
- There are also projective and abstract varieties but let us not worry about them for now

Matrix varieties

Special linear group

$$SL_n(\mathbb{K}) = \{M \text{ a } n \times n \text{ matrix} | \det(M) = 1\}$$

▶ By considering entries as variables, det(_) = 1 is a polynomial equation

▶ $SL_n(\mathbb{K})$ is thus an affine variety in \mathbb{K}^{n^2}

Thank you for your attention!

I hope that was of some help.