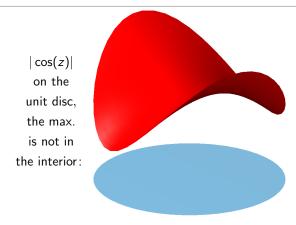
What are...sheaves, take 1?

Or: Complex analysis again

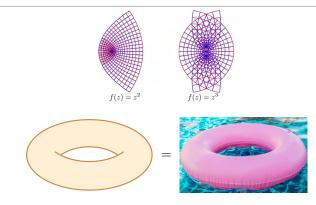
Maximum modulus principle (MMP)



Modulus = another name for the absolute value

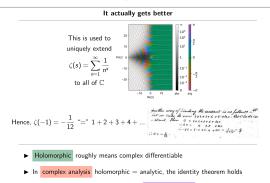
- ▶ MMP A holomorphic $f: U \to \mathbb{C}$ cannot have a strict maximum on a connected open set $U \subset \mathbb{C}$
- ▶ Thus, if $|f(m)| \ge |f(z)|$ in some neighborhood of *m*, then *f* is constant

Complex manifolds are weird



- The transition maps defining complex manifolds are "rigidity" gives complex manifolds "weird" behavior
- Example Any holomorphic function on a compact connected complex manifold is constant by MMP
- Example The torus has just one structure of a real manifold, but many different complex structures ("elliptic curves")

Function on complex manifolds are rare



- ► Holomorphic functions are also called regular functions
- ► Classical tool The study of real manifolds via the \mathbb{R} -algebra ($C^{\infty}(M) =$ smooth maps from M to \mathbb{R})
- Problem MMP implies that the C-algebra (H(M) = holomorphic maps from M to C) is trivial for a compact connected complex manifold M
- ▶ To keep in mind for later The identity theorem implies that $H(U) = H(\mathbb{C}^n)$ for $U \subset M$ small enough and open

Sheaves , in a limited way for now and only on some (complex) manifold M: (i) A presheaf \mathcal{F} is a collection

 $\mathcal{F}(U) = \{ f \colon U \to \mathbb{C} \text{ satisfying condition X (e.g. holomorphic}) \}$

for any nonempty open subset $U \subset M$ such that the restriction $f|_{U'} \in \mathcal{F}(U')$ for all $f \in \mathcal{F}(U)$ and $U' \subset U$

- (ii) A presheaf \mathcal{F} is a sheaf if for any open set $U \subset M$ and any open cover U_i : $f \in \mathcal{F}(U)$ if $f|_{U_i} \in \mathcal{F}(U_i)$
 - This enables us to deal with functions which have various domains of definition (which is good for holomorphic ones)
 - ► A collection of functions is a presheaf if it is closed under restriction
 - ► A presheaf is a sheaf if the defining condition is local
 - $\triangleright \ \ \text{If} \ X = \text{continuous, then} \ \mathcal{F} \ \text{is a sheaf}$
 - $\triangleright \ \ \text{If} \ X = \text{constant, then} \ \mathcal{F} \ \text{is not a sheaf}$

Collecting stuff

- Real world sheaf = a bunch of cereal-crop stems bound together
- Math sheaf = a bunch of spaces bound together
- ► The emphasize is on bound together

Thank you for your attention!

I hope that was of some help.