Or: The beginning of Galois theory



Groups in the wild

Groups naturally arise as automorphisms |a.k.a. symmetries of objects, e.g.:

» Symmetry groups of the platonic solids ' Dice!
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» Roots of polynomials also have certain symmetries
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Question. What are the | symmetry groups of fields ?



Symmetries and field extensions
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» f and g are automorphisms of Q(v/2,i) = Q(v/2 + i), both fix Q@

» The minimal polynomial of /2 + i is of degree 4 = |Z/27Zx7Z/2Z|



A badly behaved example

2imn

e 5

Z/57.C 1

IS
5

2irm

e 5
o
f: CE,: _ ek2ﬂ'i/5 N Céﬂ—l

» f is not an automorphisms of Q(¢s) and f |does not fix @

» The minimal polynomial of (s is of degree 4, not 5 = |Z/5Z)|



For completeness: The formal definition/statements

(a) An automorphism f € Aut(L) is a field isomorphism L. — I ' A symmetry
(b) Aut(L) is a group
(c) For a subgroup G C Aut(L) we have the fixed (sub)field

L¢ ={xcL|f(x)=xVfe G} CL

(d) The orbit of x € L is
Gx={f(x)|f e G}

Let K =L for G C Aut(L) finite
> If Gx={x=x1,....,%}, then [K(x): K] =r
> [K(x) : K] divides |G|
» The minimal polynomial is

my=(X—x1) .- (X—x)

» [L:K]=|G]



Back to the fifth root of unity (s
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» f is an automorphisms of Q({s) and f |does fix @

» The minimal polynomial of (5 is

me; = (X = Gs)(X = G)X = @)X - ¢)



| hope that was of some help.



