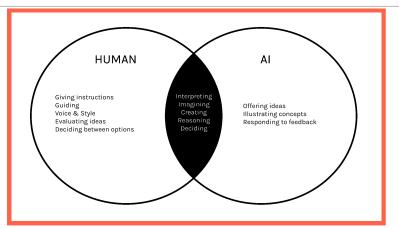
Al for the working mathematician - part 1?

Or: Introduction

What is everyday AI for math?



- ► Everyday AI for math = LLMs + small tools folded into research
- ► In 2025 (caveat: this may age fast) They speed up reading, coding, drafting, organizing, but you remain the supervisor
- ► Guardrail Treat AI as a bright but unreliable collaborator; verify everything

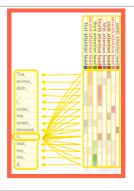
What about mathematics?

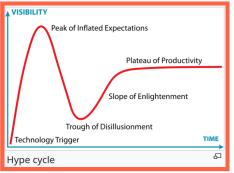
Al can produce
perfect proofs
of well-known results
but that is not
what this series is about

```
ChatGPT 5 ~
                                                                                                                        Can you prove that pi is irrational?
                                            Thought for 53s
                                            Sure—here's a clean, self-contained proof (often attributed to Niven) that \pi is irrational.
                                            Proof by contradiction
                                            Assume \pi is rational. Write \pi = \frac{a}{r} with coprime positive integers a, b.
                                            For a positive integer n, define the polynomial
                                                                                    P_n(x) = \frac{(bx)^n (a - bx)^n}{a!}.
                                            Note that P_n has integer coefficients (binomial expansion in the integer variables bx and a-bx), and that
                                            P_n vanishes to order n at both endpoints x=0 and x=\pi=\frac{a}{b}.
                                            Consider the integral
                                                                                     I_n = \int_{-\pi}^{\pi} P_n(x) \sin x \, dx.
                                            Step 1: 0 < I_n < 1 for n large
                                            On [0,\pi] we have 0 \leq x(\pi-x) \leq \pi^2/4, hence
                                                                               0 \le P_n(x) \le \frac{(b^2-2/4)^n}{4} = \frac{(a^2/4)^n}{2}.
```

- ► Simulating rigorous reasoning is unsolved; proofs still need supervision
- ► Good news Al still helps: structure, search, (counter)examples, edits, ...
- ► This series Examples of how to use AI in research, how not to use it, and the "Why does it work?"

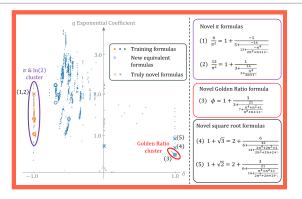
Everyday AI = LLMs





- ► Large language models (LLMs) are trained on huge corpora of text/code to predict the next token
- ► They are good at supporting workflows we will cover: reading (summaries, glossaries), coding (snippets, datasets), writing (abstracts, whole passages), and reproducibility (templates, notes)
- ► They are not particularly good for reasoning, guarantees, and originality (but we will still see how they can be used for these tasks)

What it can do for you well (general)



- Example "Unsupervised Discovery of Formulas for Mathematical Constants" (2024, https://arxiv.org/abs/2412.16818, not an LLM)
- Good at exploring millions of expressions and rediscovering known formulas for π , e, $\ln(2)$ and friends
- ▶ Striking the system also found new identities, later verified by mathematicians

What it can do for you well (LLM)

$$\sum_{k=0}^{\infty}rac{k!}{(2k+1)!!}=\sum_{k=0}^{\infty}rac{2^kk!^2}{(2k+1)!}=rac{\pi}{2}$$
 (see also Double factorial)

$$\sum_{k=0}^{\infty} \frac{k!}{2^k (2k+1)!!} = \frac{2\pi}{3\sqrt{3}}$$

$$\sum_{k=0}^{\infty} \frac{k! (2k)! (25k-3)}{(3k)! \, 2^k} = \frac{\pi}{2}$$

$$\sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 640320^{3k}} = \frac{4270934400}{\sqrt{10005}\pi} \text{ (see Chudnovsky algorithm)}$$

$$\sum_{k=0}^{\infty} rac{(4k)!(1103+26390k)}{(k!)^4396^{4k}} = rac{9801}{2\sqrt{2}\pi}$$
 (see Srinivasa Ramanujan, Ramanujan–Sato series)

- ► The formulas from the previous slide are very restricted in scope not quite human-level formulas
- ► Expect the same from everyday AI: it can generate new results, but usually only small leaps
- ► Takeaway In 2025, use LLMs for workflow boosts, not breakthroughs

Thank you for your attention!

I hope that was of some help.