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Tutorial 12 — Solutions

Weekly summary and definitions and results for this tutorial
a) A p-colouring of a knot is a colouring of the segments of the knots by colours 0, 1, 2,… , 𝑝− 1

in such a way that for each crossing 2𝑐𝑖 ≡ 𝑐𝑗 + 𝑐𝑘 (mod 𝑝). Let 𝐶𝑝(𝐾) be the number of
𝑝-colourings of the knot 𝐾 .

b) A knot 𝐾 is 𝑝-colourable if it has a 𝑝-colouring that uses at least two colours. Equivalently, 𝐾
is 𝑝-colourable if and only if 𝐶𝑝(𝐾) > 0.

c) Given a knot projection, read the segments 𝑐1,… , 𝑐𝑛 in a direction around the knot. The knot
matrix 𝑀𝐾 = (𝑚𝑖𝑗) is the 𝑛× 𝑛 matrix where 𝑚𝑖𝑗 is the sum of contributions of the 𝑗th segment
to the 𝑖th crossing given by

𝑚𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

2, if 𝑖 = 𝑗,
−1, if 𝑐𝑗 goes under 𝑐𝑖 at the 𝑖th crossing,
0, otherwise.

If 𝐾 is alternating then the row and column sums in 𝑀𝐾 are all zero.

d) If 𝑀 is an 𝑛 × 𝑛 matrix and 1 ⩽ 𝑟, 𝑐 ⩽ 𝑛 then the (𝑟, 𝑐)-minor of 𝑀 is the (𝑛 − 1) × (𝑛 − 1)
matrix obtained by removing all entries in row 𝑟 and column 𝑐 from 𝑀 .

e) The knot determinant of an alternating knot is det(𝐾) ∶= | det(𝑀𝐾)𝑟𝑐|, where (𝑀𝐾 is any
minor of the knot matrix 𝑀𝐾 . If 𝑝 is a prime then the alternating knot 𝐾 is 𝑝-colourable if and
only if 𝑝 divides det(𝐾).

f) The crossing number cross(𝐾) of a knot 𝐾 is the minimum number of crossings in any knot
projection of 𝐾 . By definition, cross(𝐾) is a knot invariant but it is difficult to calculate. We
saw that cross(𝐾) = 0 if and only 𝐾 is the unknot and cross(𝐾 #𝐿) ⩽ cross(𝐾) + cross(𝐿).

g) A knot 𝐾 is a composite knot if 𝐾 = 𝐿 #𝑀 for non-trivial knots 𝐿 and 𝑀 . The knot 𝐾 is
prime if it is not composite.

h) Every knot can be written, uniquely, as a connected sum of prime knots.

i) A knot is alternating is the under and over crossings alternate as you you travel around the
knot in a fixed direction.

j) Let 𝐾 be a not. A Seifert surface for 𝐾 is any surface that has 𝐾 as its boundary. Seifert
surfaces of 𝐾 always exist but they are not unique. We gave an algorithm for constructing the
Seifert surface of a knot given by putting an orientation on the knot, cutting the over-strings
and then rejoining the using the orientation, gluing Seifert circles onto the result circles and
then added twists with boundaries given by the previous crossings.
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k) The genus of the knot 𝑆 is the knot invariant
𝑔(𝐾) = min

{

1
2

(

1 − 𝜒(𝑆)
)

|

|

|

𝑆 is a Seifert surface of 𝐾
}

.

For knots 𝐾 and 𝐿, 𝑔(𝐾 #𝐿) = 𝑔(𝐾) + 𝑔(𝐿)

l) If 𝐾 has a knot projection with 𝑐 crossings and the corresponding Seifert surface has 𝑠 Seifert
circles then 𝑔(𝐾) = 1

2
(1 + 𝑐 − 𝑠).
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Questions to complete before the tutorial
1. Let 𝐾 = 41 be the figure of eight knot:

41 =

Show that 41 is not 3-colourable.
Solution Suppose by way of contradiction that the figure eight knot has a 3-colouring that uses all
three colours. Then there are two possibilities: either all of segments meeting at the top crossing have
the same colour, say blue, or they all have different colours:

Here we use gray strings for those strings for which the colour is still to be determined.
If all colours at the top crossing are the same then each of the remaining crossings force the

remaining segment to be coloured blue, since two the segments in each of these crossings are already
blue. In the second case, where the segments meeting the top crossing all have different colours, the
three remaining crossings all force the remaining to coloured with the missing colour: the middle
crosses forces the string to be coloured green, the bottom left crossing forces it to be coloured blue,
and the bottom right crossing forces the segments to be coloured red. Hence, either way, we see that it
is not possible to give a 3-colouring of the figure eight knot that uses all three colours.

Alternative solution In lectures, we proved that a knot 𝐾 is 3-colourable if and only if 3 divides
its knot determinant. Below we show det(41) = 5, which is not divisible by 3. Hence, 41 is not
3-colourable.

2. Compute the knot determinants of the knots:

Solution The first two knot are the unknot and the third knot is equivalent to the trefoil knot, so we
expect that the knot determinants of these knots should be 1, 1 and 3, respectively.

The first knot is alternating but has only one segment and one crossing so we obtain:

𝐾1 =

𝑐1

𝑀𝐾1
=
(

0
)

⟹ det(𝐾1) = 1,

because the 1 × 1 minor of 𝑀𝐾1
is the empty matrix and, by convention, this matrix has determinant 1.

Here, and below, the arrows show the orientation that we are using for the knot. The orientation is not
MATH3061: Tutorial 11 — Solutions Page 2 of 10



MATH3061

essential when computing the knot matrix, but it is always better to put the segments into “travelling
order”.

The second knot is not alternating, so the segments do not naturally label the crossings. Labelling
the crossings and segments as shown, we obtain:

𝐾2 =

𝑐1

𝑐2 𝑐3

𝑥1

𝑥2

𝑥3 ⎛

⎜

⎜

⎝

−1 −1 2
−1 −1 2
−1 0 1

⎞

⎟

⎟

⎠

As 𝐾2 is not an alternating knot, to determine colourability we have to compute the determinants of all
none of the 2 × 2 minors of the knot matrix 𝑀𝐾2

. We see that

𝑀11 =
|

|

|

|

−1 2
0 1

|

|

|

|

= −1, 𝑀12 =
|

|

|

|

−1 2
−1 1

|

|

|

|

= 1, 𝑀13 =
|

|

|

|

−1 −1
−1 0

|

|

|

|

= −1

𝑀21 =
|

|

|

|

−1 2
0 1

|

|

|

|

= −1, 𝑀22 =
|

|

|

|

−1 2
−1 1

|

|

|

|

= 1, 𝑀23 =
|

|

|

|

−1 −1
−1 0

|

|

|

|

= −1

𝑀31 =
|

|

|

|

−1 2
−1 2

|

|

|

|

= 0, 𝑀32 =
|

|

|

|

−1 2
−1 2

|

|

|

|

= 0, 𝑀33 =
|

|

|

|

−1 −1
−1 −1

|

|

|

|

= 0.

In particular, this example shows that if a knot is not alternating then the determinants of the (𝑛 − 1) ×
(𝑛 − 1) minors of an 𝑛 × 𝑛 knot matrix are not necessarily equal.

Finally, the third knot is an alternating knot and

𝐾3 =

𝑐1

𝑐2 𝑐3

𝑐4 𝑀𝐾3
=
⎛

⎜

⎜

⎜

⎝

2 −1 −1 0
0 2 −1 −1
−1 −1 2 0
−1 0 0 1

⎞

⎟

⎟

⎟

⎠

To compute the knot determinant we can take any minor so it makes sense to take one that gives us
more zeros in the minor. Taking the (2, 4)-minor gives

det(𝐾3) =
|

|

|

|

|

|

|

det
⎛

⎜

⎜

⎝

2 −1 −1
−1 −1 2
−1 0 0

⎞

⎟

⎟

⎠

|

|

|

|

|

|

|

=
|

|

|

|

|

det
(

−1 −1
−1 2

)

|

|

|

|

|

= 3,

which is what we expect because 𝐾3 is a knot projection of the trefoil knot.

Questions to complete during the tutorial

3. Let 𝐾 be a knot with 𝑛 crossings, 𝑝 > 2 and suppose that 𝑐1,… , 𝑐𝑛 is a 𝑝-colouring of 𝐾 .
a) Let 𝑐′𝑘 = 𝑐𝑘 + 1 (mod 𝑝), for 1 ⩽ 𝑘 ⩽ 𝑛. Show that 𝑐′1,… , 𝑐′𝑛 is a 𝑝-colouring of 𝐾 .
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Similarly, 7-colourings of the 51 knot are:

52

1

0

4

63

2

1

5

04

3

2

6

15

4

3

0

26

5

4

1

c) Given part (a), the proof is the same as that given in lectures for 3-colourings. The picture is that:

𝐾 𝐿

𝐾 #𝐿

𝐶𝑝(𝐾) colourings 1
𝑝𝐶𝑝(𝐿) colourings

That is, we have 𝐶𝑝(𝐾) choices of colourings for the knot 𝐾 . The choice of colouring for 𝐾 fixes
the colour of the string segment that is cut when forming the connected sum with 𝐿, so there
are 1

𝑝
𝐶𝑝(𝐿) choices of colourings for 𝐿 given the fixed colouring of the used to form the connected

sum. Therefore, there are 1
𝑝
𝐶𝑝(𝐾)𝐶𝑝(𝑙) different 𝑝-colourings of 𝐾 #𝐿.

4. Find the determinants of the knots 41, 51 and 52 and determine for which odd primes 𝑝 they are
𝑝-colourable.

41 = 51 = 52 =

Solution

a) Consider the knot 41. Using the same labelling as in Question 1 rows of the matrix 𝑀 associated
to 41 are
1st Row : [2,−1,−1, 0] because 𝑥1 separates 𝑥2 and 𝑥3.
2nd Row : [0, 2,−1,−1] because 𝑥2 separates 𝑥3 and 𝑥4.
3rd Row : [−1, 0, 2,−1, ] because 𝑥3 separates 𝑥4 and 𝑥1
4th Row : [−1,−1, 0, 2], because 𝑥4 separates 𝑥1 and 𝑥2.Note by construction all row sums are 0.
The matrix 𝑀 associated in this way with 41 is

⎛

⎜

⎜

⎜

⎝

2 −1 −1 0
0 2 −1 −1
−1 0 2 −1
−1 −1 0 2

⎞

⎟

⎟

⎟

⎠

Observe the column sums of 𝑀 are also all 0, as will always be the case for alternating knot
diagrams. The knot determinant of 41 is thus the absolute value of the determinant of any 3 × 3
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minor 𝑀𝑖𝑗 of 𝑀 . Recall the 𝑖𝑗th minor of a matrix 𝑀 is the matrix formed by ignoring the 𝑖th row and
𝑗th column of 𝑀 . Ignoring the fourth row and first column of 𝑀 gives

𝑀41 =
⎛

⎜

⎜

⎝

−1 −1 0
2 −1 −1
0 2 −1

⎞

⎟

⎟

⎠

This minor has determinant −5:

det𝑀41
𝑅2=𝑅2+2𝑅1=

|

|

|

|

|

|

−1 −1 0
0 −3 −1
0 2 −1

|

|

|

|

|

|

= −
|

|

|

|

−3 −1
2 −1

|

|

|

|

= −5.

In lectures we saw that if 𝑝 is an odd prime then a knot 𝐾 is 𝑝-colourable if and only if 𝑝 divides
its knot determinant Det(𝐾). Thus the knot 41 is 5-colourable, but not 𝑝-colourable for any odd
prime 𝑝 ≠ 5.

You can check
𝑥1 = 2, 𝑥2 = 3, 𝑥3 = 1, 𝑥4 = 0,

is a 5-colouring of 41.b) Now consider the knot 51. No matter where you start labelling the segments of the knot diagram
51 long as you travel along the knot you obtain the knot matrix

𝑀 =

⎛

⎜

⎜

⎜

⎜

⎝

2 0 −1 −1 0
0 2 0 −1 −1
−1 0 2 0 −1
−1 −1 0 2 0
0 −1 −1 0 2

⎞

⎟

⎟

⎟

⎟

⎠

Evaluating any 4 × 4 minor 𝑀𝑖𝑗 will show Det(51) = 5. To see this it makes sense to pick a minor
that removes some non-zero entries from the matrix, so let’s consider 𝑀44:

det𝑀44 =

|

|

|

|

|

|

|

|

2 0 −1 0
0 2 0 −1
−1 0 2 −1
0 −1 −1 2

|

|

|

|

|

|

|

|

𝑅1=𝑅1+2𝑅4=

|

|

|

|

|

|

|

|

0 0 3 −2
0 2 0 −1
−1 0 2 −1
0 −1 −1 2

|

|

|

|

|

|

|

|

= −
|

|

|

|

|

|

0 3 −2
2 0 −1
−1 −1 2

|

|

|

|

|

|

𝑅2=𝑅2+2𝑅3= −
|

|

|

|

|

|

0 3 −2
0 −2 3
−1 −1 2

|

|

|

|

|

|

=
|

|

|

|

3 −2
−2 3

|

|

|

|

= 5.

Therefore, the knot 51 is 5-colourable, but not 𝑝-colourable for any odd prime 𝑝 ≠ 5.
c) Finally, consider 52. Labelling the segments in travelling order, starting at the inner crossing, gives

the matrix

𝑀 =

⎛

⎜

⎜

⎜

⎜

⎝

2 0 −1 −1 0
0 2 0 −1 −1
−1 0 2 0 −1
−1 −1 0 0 2
0 −1 −1 2 0

⎞

⎟

⎟

⎟

⎟

⎠

This time we compute 𝑀45:

det𝑀45 =

|

|

|

|

|

|

|

|

2 0 −1 −1
0 2 0 −1
−1 0 2 0
0 −1 −1 2

|

|

|

|

|

|

|

|

𝑅1=𝑅2+2𝑅3=

|

|

|

|

|

|

|

|

0 0 3 −1
0 2 0 −1
−1 0 2 0
0 −1 −1 2

|

|

|

|

|

|

|

|

= −
|

|

|

|

|

|

0 3 −1
2 0 −1
−1 −1 2

|

|

|

|

|

|

𝑅2=𝑅2+2𝑅1= −
|

|

|

|

|

|

0 3 −1
0 −2 3
−1 −1 2

|

|

|

|

|

|

=
|

|

|

|

3 −1
−2 3

|

|

|

|

= 7.
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Hence, Det(52) = 7. Thus the knot 52 is 7-colourable, but not 𝑝-colourable for any odd prime
𝑝 ≠ 7.

5. a) Calculate the genus of the three knots:

41 = 51 = 52 =

b) Using part (a), or otherwise, show that all of these knots are prime.
Solution

a) All of these knot projections alternating so, by a theorem stated in lectures, the genus of each of
these knots is 1

2
(1 + 𝑐 − 𝑠), where 𝑐 is the crossing number and 𝑠 is the number of Seifert circles in

the corresponding Seifert surface for the knot.
The figure eight knot 41 has three Seifert circles, which are the regions shown below:

Therefore, 𝑔(41) = 1
2
(1 + 4 − 3) = 1.

The cinquefoil has two Seifert circles, which are the regions shown in:

Hence, 𝑔(51) = 1
2
(1 + 5 − 2) = 2.

Finally, the knot 52 has four Seifert circles:

Therefore, the heart knot 52 has genus 1
2
(1 + 5 − 4) = 1.

b) By lectures, 𝑔(𝐾 #𝐿) = 𝑔(𝐾) + 𝑔(𝐿), so the figure eight knot 41 and the heart knot 52 are both
prime since they are of genus 1 by part (a).
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The cinquefoil knot 51 has genus 2, so the genus alone is not sufficient to show that it is prime.
The easiest way to see that this knot is prime is to notice that 51 is the (5, 2)-torus knot, which
means that it is prime. To see this explicitly, to write 51 and a connected sum 𝐾 #𝐿 we need to
cut the knot into two pieces by cutting exactly two strings in the knot in ℝ3 with a plane. The only
way to cut the cinquefoil knot this way is to cut off one of the “ears”:

Hence, the 51 knot is prime.

6. a) What is the Euler characteristic of the double torus?
b) What is the minimum number of colours needed to be able to colour any map on the double torus

so that no two adjacent regions have the same colour?

Solution

a) The double torus 𝑇 has Euler characteristic −2.
b) By Heawood’s theorem, we need at most

𝐶𝑇 < 1
2

(

7 +
√

49 − 24𝜒(𝑇 )) = 1
2
(7 +

√

97) ≈ 8.4.

Hence, the maximum number of colours needed for a map on the double torus 𝑇 is 𝐶𝑇 = 8

Questions to complete after the tutorial

7. Find the determinants of the knots 61, 62 and 63 and determine for which odd primes 𝑝 they are
𝑝-colourable.

61 = 62 = 63 =

Solution All of these knots are alternating, so the knot determinant is the (absolute value of the),
determinant of any minor of the knot matrix. As the knot determinant is the absolute value of the
determinant of any minor of the knot matrix we ignore the signs of the determinants below when they
do not affect the final answer.
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First consider the knot 61. Labelling the segments in travelling order starting from the segment on
the top left the knot matrix is

𝑀61 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 0 0 0 −1 −1
0 2 0 −1 −1 0
−1 0 2 0 0 −1
0 −1 −1 2 0 0
−1 −1 0 0 2 0
0 0 −1 −1 0 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Note that all of the row and column sums are 0, as they must be. Taking the (6, 6)-minor and using row
and column operations to evaluate the determinant gives

±det(61) =

|

|

|

|

|

|

|

|

|

|

2 0 0 0 −1
0 2 0 −1 −1
−1 0 2 0 0
0 −1 −1 2 0
−1 −1 0 0 2

|

|

|

|

|

|

|

|

|

|

𝐶1=𝐶1+2𝐶5=

|

|

|

|

|

|

|

|

|

|

0 0 0 0 −1
−2 2 0 −1 −1
−1 0 2 0 0
0 −1 −1 2 0
3 −1 0 0 2

|

|

|

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

−2 2 0 −1
−1 0 2 0
0 −1 −1 2
3 −1 0 0

|

|

|

|

|

|

|

|

𝑅3=𝑅3+2𝑅1=

|

|

|

|

|

|

|

|

−2 2 0 −1
−1 0 2 0
−4 3 −1 0
3 −1 0 0

|

|

|

|

|

|

|

|

=
|

|

|

|

|

|

−1 0 2
−4 3 −1
3 −1 0

|

|

|

|

|

|

𝐶3=𝐶3+2𝐶1=
|

|

|

|

|

|

−1 0 0
−4 3 −9
3 −1 6

|

|

|

|

|

|

=
|

|

|

|

3 −9
−1 6

|

|

|

|

= 18 − 9 = 9.

For the third equality we expanded the determinant along the first row, for the fifth equality we expanded
the determinant down the fourth column and for the seventh equality we expanded the determinant
along the first row. Hence, det(61) = 9, so 61 is 3-colourable.

Now consider the knot 62. Labelling the segments in travelling order start from the top of the knot,
the knot matrix is:

𝑀62 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 0 −1 −1 0 0
0 2 0 −1 −1 0
0 0 2 0 −1 −1
−1 0 0 2 0 −1
0 −1 −1 0 2 0
−1 −1 0 0 0 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Note that all of the row and column sums are 0, as they must be. Taking the (6, 6)-minor and using row
and column operations to evaluate the determinant gives

±det(62) =

|

|

|

|

|

|

|

|

|

|

2 0 −1 −1 0
0 2 0 −1 −1
0 0 2 0 −1
−1 0 0 2 0
0 −1 −1 0 2

|

|

|

|

|

|

|

|

|

|

𝑅1=𝑅1+2𝑅4=

|

|

|

|

|

|

|

|

|

|

0 0 −1 3 0
0 2 0 −1 −1
0 0 2 0 −1
−1 0 0 2 0
0 −1 −1 0 2

|

|

|

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

0 −1 3 0
2 0 −1 −1
0 2 0 −1
−1 −1 0 2

|

|

|

|

|

|

|

|

𝑅2=𝑅2+2𝑅4=

|

|

|

|

|

|

|

|

0 −1 3 0
0 −2 −1 3
0 2 0 −1
−1 −1 0 2

|

|

|

|

|

|

|

|

=
|

|

|

|

|

|

−1 3 0
−2 −1 3
2 0 −1

|

|

|

|

|

|

𝐶1=𝐶1+2𝐶3=
|

|

|

|

|

|

−1 3 0
4 −1 3
0 0 −1

|

|

|

|

|

|

=
|

|

|

|

−1 3
4 −1

|

|

|

|

= 1 − 12 = −11,
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where we expanded the determinants down the first column twice and along the last row, respectively.
Hence, det(62) = 11, so 61 is 11-colourable.

Finally, consider 63. Labelling the segments in travelling order start from the top of the knot, the
knot matrix is:

𝑀62 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 0 −1 −1 0 0
−1 2 0 0 0 −1
0 0 2 0 −1 −1
−1 −1 0 2 0 0
0 −1 −1 0 2 0
0 0 0 −1 −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Again, it is good to check that the row and column sums are 0, as they must be. Taking the (1, 1)-minor,
is slightly and using row and column operations to evaluate the determinant gives

±det(63) =

|

|

|

|

|

|

|

|

|

|

2 0 0 0 −1
0 2 0 −1 −1
−1 0 2 0 0
−1 −1 0 2 0
0 0 −1 −1 2

|

|

|

|

|

|

|

|

|

|

𝐶1=𝐶1+2𝐶5=

|

|

|

|

|

|

|

|

|

|

0 0 0 0 −1
−2 2 0 −1 −1
−1 0 2 0 0
−1 −1 0 2 0
4 0 −1 −1 2

|

|

|

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

−2 2 0 −1
−1 0 2 0
−1 −1 0 2
4 0 −1 −1

|

|

|

|

|

|

|

|

𝑅2=𝑅2+2𝑅4=

|

|

|

|

|

|

|

|

−2 2 0 −1
7 0 0 −2
−1 −1 0 2
4 0 −1 −1

|

|

|

|

|

|

|

|

=
|

|

|

|

|

|

−2 2 −1
7 0 −2
−1 −1 2

|

|

|

|

|

|

𝑅1=𝑅1+2𝑅3=
|

|

|

|

|

|

−4 0 3
7 0 −2
−1 −1 2

|

|

|

|

|

|

=
|

|

|

|

−4 3
7 −2

|

|

|

|

= 8 − 21 = −13,

where we have expanded the determinants along the first row, the third column, and the second column
respectively. Hence, det(63) = 13, so 63 is 13-colourable.

In particular, this shows that these three knots are pairwise inequivalent and that they are not equal
to the unknot. As 62 is the first 11-colourable knot we have seen it is prime. Similarly, 63 is prime
as it is the first 13-colourable knot. As 61 is 3-colourable, colourability does not prove that this knot
is prime, however, arguing as in question 5 shows that 61 has genus 1, which proves that this knot is
prime.
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