Geometry and topology

Tutorial 7

Here is a quick summary and main results from the lectures in Week 7. Please watch the lecture recordings to gain a better understanding of this material.

Weekly summary and definitions and results for this tutorial

- a) A graph \mathcal{G} consists of a set $V_{\mathcal{G}}$ of vertices and a *multiset* $E_{\mathcal{G}}$ of edges, which are pairs of vertices.
- b) Two graphs \mathcal{G} and \mathcal{H} are **isomorphic** if there is a bijection $f: V_{\mathcal{G}} \longrightarrow V_{\mathcal{H}}$ such that $\{u, v\}$ is an edge of \mathcal{G} if and only if $\{f(u), f(v)\}$ is an edge of \mathcal{H} .
- c) The **degree** deg v of a vertex $v \in V_G$ is the number of edges in \mathcal{G} that start or end at v.
- d) Proposition (Degree-Sum Formula) If G is a graph then $\sum_{v \in V_G} \deg v = 2\#E_G$.
- e) A graph \mathcal{H} is a **subgraph** of \mathcal{G} if $V_{\mathcal{H}} \subseteq V_{\mathcal{G}}$ and $E_{\mathcal{H}} \subseteq E_{\mathcal{G}}$.
- f) A graph is **planar** if it can be embedded (drawn) in \mathbb{R}^2 without edge crossings.
- g) Every graph can be embedded in \mathbb{R}^3 without edge crossings.
- h) A **subdivision** of a graph G is any graph that it obtained by replacing any number of edges $\bullet \bullet \bullet$ with $\bullet \bullet \bullet \bullet \bullet$.
- j) A circuit is **contractible** if it is possible to reduce it to a path of length 0 by repeatedly removing pairs of *consecutive* repeated edges.
- k) A graph is **connected** *G* if any two vertices $u, v \in V_G$ can be joined by a path.
- 1) A **tree** is a connected graph in which every circuit is contractible.
- m) If \mathcal{G} is a graph then a spanning tree \mathcal{T} for \mathcal{G} is a subgraph of \mathcal{G} such that \mathcal{T} is a tree and $V_{\mathcal{T}} = V_{\mathcal{C}}$.
- n) Theorem Every connected graph has a spanning tree.
- o) The **Euler characteristic** of a graph \mathcal{G} is $\chi(\mathcal{G}) = \#V_{\mathcal{G}} \#E_{\mathcal{G}}$.
- p) Theorem If \mathcal{G} is a connected graph then $\chi(G) \leq 1$ with equality if and only if G is a tree.
- q) Definition Let \mathcal{G} be a connected graph. The number of independent cycles in \mathcal{G} is $1 \chi(\mathcal{G})$.

r) A Eulerian circuit, or Eulerian cycle, is a path through in a graph G that goes through every edge exactly once, and every vertex at least once.

Questions to complete *before* the tutorial

- **1.** a) Draw a graph with 4 vertices and 5 edges.
 - b) Check that the Degree-sum Formula holds for the graph that you drew for part (a).
- 2. a) Draw a graph with a non-trivial circuit. That is, give an example of a graph that is not a tree.
 - b) Compute the Euler characteristic of your graph in part (a).
 - c) Draw a graph that is a tree.
 - d) Compute the Euler characteristic of your tree from part (c).
- **3.** Determine the Euler characteristic of the cycle graphs C_n , for $n = 1, 2, 3 \dots$ etc.

Questions to complete *during* the tutorial

- **4.** a) The cube graph is the graph of vertices and edges of a cube. Make sketches to show that the cube graph is planar.
 - b) Make sketches to show that the octahedral graph, the graph formed by the vertices and edges of the regular octahedron, is planar.
- 5. Show that in any graph the number of vertices of odd degree must be even.

[*Hint:* Use the Degree-sum Formula.]

6. a) Show that if the connected components of a graph \mathcal{G} are $\mathcal{G}_1, \ldots, \mathcal{G}_n$ then

$$\chi(\mathcal{G}) = \chi(\mathcal{G}_1) + \dots + \chi(\mathcal{G}_n).$$

- b) A *forest* is a graph such that all of its connected components are trees. If \mathcal{F} is a forest show that $\chi(\mathcal{F})$ is equal to the number of trees in the forest.
- c) Give an example of a graph \mathcal{G} that is *not* a tree and $\chi(\mathcal{G}) = 1$.
- 7. The following graphs are projections of the five Platonic solids onto the plane:

- a) Determine the Euler characteristic of each of these graphs.
- b) A *Eulerian circuit* in a graph is a circuit that goes through every edge exactly once, and every vertex at least once. Find a Eulerian cycle for the octahedral graph.
- 8. The complete bipartite graph $\mathcal{K}_{m,n}$, for $m, n \ge 1$, has vertex set $V = M \sqcup N$ (disjoint union), where m = |M|, n = |N|, and with edge set $\{(x, y) \mid x \in M \text{ and } y \in N\}$. That is, $\mathcal{K}_{m,n}$ has mn edges that connect every element of M with every element of N. Show that all the bipartite graphs $\mathcal{K}_{2,n}$ are planar

Questions to complete *after* the tutorial

MATH3061

- 9. A spanning tree in a graph G is any subgraph of T that is a tree and has the same vertex set as G. Let t_n be the number of distinct spanning trees in the complete graph K_n .

 - a) Find t₂, t₃ and t₄.
 b) (Harder.) What is t₅?