

Stop of die d

neM

- ▶ The fundamental group measures how one can arrange loops in spaces
- ▶ Formally, maps $f: [0,1] \rightarrow X$ such that f(0) = f(1) Ends glued

- ▶ The homotopy group π_n measures how one can arrange n-spheres in spaces
- ▶ Formally, maps $\underline{f:[0,1]^n \to X}$ such that $f(\delta[0,1]^n) = x$ Boundary glued

▶ Note that the fundamental group is the case n = 1 S^1 is a loop

Erbanon - Hilton argument "non 1- him setup"

X a set with two binary operations \circ ("vertical") and \otimes ("horizontal") satisfying:

- (a) They are unital Empty space —
- (b) They satisfy a 2-dimensional compatibility condition

$$(w \otimes x) \circ (y \otimes z) = (w \circ y) \otimes (x \circ z)$$

Then \circ and \otimes are the same and in fact commutative and associative

Clui To form a group of Ton is commodalis if

$$(0,1) \times (0,1)$$

 $(0,1) - (1,1)$

The The Delpate ... & Elpate

Huye difference to TI, to

- ▶ The Eckmann–Hilton argument shows that this is commutative for $n \ge 2$
- ► "Classical operations are 1-dimensional, and commutativity is lost"

weally diff from To

Whitehead's theme

For connected cell complexes X, Y and $f: X \rightarrow Y$ the following are equivalent:

- (a) $f: X \to Y$ is a homotopy equivalence Topology
- (b) $f_* \colon \pi_*(X) \to \pi_*(Y)$ is an isomorphism Algebra

The good

WM

X =

- ▶ The space X has trivial homotopy $\pi_*(X) \cong 0$
- ▶ The space X is trivial $X \simeq point$

- ▶ The Warsaw circle W has trivial homotopy $\pi_*(W) \cong 0$
- ► The Warsaw circle W is not trivial $W \not\simeq \mathsf{point}$

The ugly

- ▶ The connected cell complexes X, Y have the same π_* $X \simeq Y$ by Whitehead?
- ▶ The connected cell complexes X, Y have different H_* $X \not\simeq Y!$
- ▶ What fails? There is no $f: X \to Y$ inducing all isomorphisms

For connected cell complexes X, Y and $f: X \rightarrow Y$ the following are equivalent:

- (a) $f: X \to Y$ is a homotopy equivalence Topology
- (b) $\underline{f_*} : \pi_1(X) \to \pi_1(Y)$ is an isomorphism and (some) $\tilde{f} : \tilde{X} \to \tilde{Y}$ gives an isomorphism $\tilde{f_*} : H_*(\tilde{X}) \to H_*(\tilde{Y})$ Algebra

What is **not great** about homotopy?

- ▶ Goal Show $\pi_k(S^n) \cong 0$ for k < n
- ▶ Strategy Poke a hole into S^n and contract the rest along with $S^k \to S^n$
- ▶ Catch Need to show that any $S^k o S^n$ misses a point

58,5ª

A map $\underline{f:X\to Y}$ between cell complexes is called cellular if $f(k ext{-skeleton})\subset k ext{-skeleton}$

Every map between cell complex is homotopic to a cellular map

- ▶ Take the balloon cell structure on S^n One 0- and one n-cell
- $lackbox{} S^k
 ightarrow S^n$ can be assumed to end in the k-skeleton of S^n
- ▶ The k-skeleton of S^n is trivial for k < n Done!

The idea of homology is pervasive in mathematics!

Group homology [edit]

a free module F_1 and a surjective homomorphism $p_1:F_1 o X$. Then one finds a free module F_2 and a surjective homomorphism $p_2:F_2 o \ker(p_1)$. Continuing in this fashion, a sequence of free modules F_n and homomorphisms p_n can be defined. By applying the functor F to this sequence, one obtains a chain complex; the homology H_n of this complex depends only on F and X and is, by definition, the n-th derived functor of F, applied to X.

A common use of group (co)homology $H^2(G,M)$ is to classify the possible extension groups E which contain a given G-module M as a normal subgroup and have a given quotient group G, so that G=E/M.

Other homology theories [edit]

- Borel-Moore homology
- Cellular homology
- Cyclic homology Hochschild homology

- Intersection homology
- K-homology

- As one increases a threshold, at what scale do we observe changes in data?
- There are many different flavors
- Today Discrete points in \mathbb{R}^n

- ► The 0th persistent homology measures how connected components change
- ▶ Birth New 0d holes=connected components (all born at zero at y = x)
- ▶ Death 0d holes=connected components vanish

- ► The 1th persistent homology measures how internal circles change
- ► Birth New 1d holes=internal circles
- ▶ Death 1d holes=internal circles vanish

- ► Homology proved useful in detecting age differences in brain artery trees
- ▶ Idea Render brain artery trees into point-clouds and use persistent homology
- ▶ Differences are subtle like most differences in human brains but measurable

2 brain artery trees. On the left, a 20-year old. On the right, a 72-year old.

