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» The fundamental group measures how one can |arrange loops in spaces

» Formally, maps f: [0, 1] — X such that f(0) = f(1) Ends glued
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» The homotopy group 7, measures how one can |arrange n-spheres in spaces ' N
T ™ T, heg

» Formally, maps f: [0, 1]” — X such that 7(5[0,1]") = x Boundary glued

» Note that the fundamental group is the case n = 1 |S' is a loop
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X a set with two binary operations o (“vertical”) and ® (“horizontal") satisfying:
(a) They are unital Empty space G—

(b) They satisfy a 2-dimensional compatibility condition

(w@x)o(y®z)=(woy)®(xoz)
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Then o and ® are the same and in fact commutative and associativj
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The Eckmann—Hilton clock

- Proof without words /ﬂ\/_\
| ?C&ﬁ\ T Lo o

K g ["—=X
1,, Jg

S g T%;,}

* homotopy

(,w/@]_.

T o~ 7w ._/2/',0,,?9“@1?//42

~7A

-

» The Eckmann—Hilton argument shows that this is commutative for n > 2

» “Classical operations are [1-dimensional , and commutativity is lost”
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For a topological space X take spheres f: [0,1]” — X based at x € X, i.e. f(4[0,1]") =«

(a

) Let m,(X,x) be the set of equivalence classes of spheres based at x modulo homotopy YUhne

— (b) m(X, %) has a _ given by concatenation T,
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[ » For path connected X we have 7,(X, x) = 7,(X, *) _
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Slight catch. This is only a group structure by using homotopy
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(X = ¥) = (1a(X) = mo(Y) for al n)-> e f v
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» Question What about the converse?
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about homotopy?
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For connected _ X,Y and f: X — Y the following are equivalent:

(a) f: X — Y is a homotopy equivalence Topology Tio '[T4 1[1 ?"3

- R
(b) fi: i (X) = m(Y) is an isomorphism -) _&:.,—\ v _\I_/.
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» Th X has trivial h t )
© space as trivial homotopy - » The Warsaw circle W has trivial homotopy - \

— » The space X is trivial X =~ point 3

» The Warsaw circle W is not trivial W 2 point )

» The connected cell complexes X, Y have the same 7, _
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» What fails? Thereis no f: X — Y _

» The connected cell complexes X, Y have different H, X 2 Y! s

— For connected _ X,Y and f: X — Y the following are equivalent:

——(a) f: X = Y is a homotopy equivalence Topology

~

< . -
—(b) fi: m(X)— m(Y) is an isomorphism and (some) f: X — Y gives an

isomorphism £, : H,(X) — H.(Y) -




What is not great about homotopy?

Easier than the fundamental groups? No!
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> The south west part is “obvious” 'Not exciting
» The north east part is still ‘mostly unknown o

» Not even all 7,(S?) are known Even computing m3(S?) is a challenge )

» Goal @ow m(S") =20 for k < n

» Strategy Poke a hole into S” and contract the rest along with Sk — S”

— » |Catch Need to show that any S¥ — S” misses a point
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A map f: X — Y between cell complexes is called cellular if

/=
f (k-skeleton) C k-skeleton Vk {\

Every map between cell complex is homotopic to a cellular map
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» Take the balloon cell structure on S” _

» Sk — S" can be assumed to end in the k-skeleton of S”

» The k-skeleton of S" is trivial for k < n n /
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Group h logy edit]
Main article: Group cohomology

of homology is pervasive in mathematics!

In abstract algebra, one uses homology to define derived functors, for example the Tor functors. Here one starts with some covariant additive functor F and some module X. The chain complex for X is defined as follows: first find
a free module F; and a surjective homomorphism p; : F; — X. Then one finds a free module F; and a surjective homomorphism p, : F; — ker(p; ). Continuing in this fashion, a sequence of free modules F, and i
Pn can be defined. By applying the functor F to this sequence, one obtains a chain complex; the homology H,, of this complex depends only on F and X and is, by definition, the n-th derived functor of F, applied to X.

‘A common use of group (co)homology H? (G, M)is to classify the possible extension groups E which contain a given G-module M as a normal subgroup and have a given quotient group G, so that G = E/M.

Other homology theories |edit]

« Borel-Moore homology
 Cellular homology

* Cyclic homology (/

« Hochschild homology{&==

« Floer homology

« Intersection homology
« K-homology

« Khovanov homology

o

« Morse homology

« Persistent homology Z

>

» There are many different flavors

> - Discrete points in R”
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Growing Disks Around Each Point Persistence Diagram
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» The Oth persistent homology measures how connected components ' change
— - T ~——————
» Birth New 0d holes=connected components (all born at zero at y = x)

» Death 0d holes=connected components vanish

Growing Disks Around Each Point Persistence
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— » The 1th persistent homology measures how internal circles 'change

» Birth New 1d holes=internal circles

— p Death 1d holes=internal circles vanish




Persistence diagram Persistent nd holes are far-away from y = x
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Perfect ciffle ofglata, and its corresponding single 1d persistence value.
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@ea Render brain artery trees into point-clouds and use persistent hm

> Homology‘ proved useful in detecting age differences in brain artery trees

-

» Differences are subtle — like most differences in human brains — but measurable

Brain Age 20

Brain Age 72

2 brain artery trees. On the left, a 20-year old. On the right, a 72-year old.
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