

- ▶ Orientability of a manifold is a consistent choice of a coordinate system per point
- ► There are non-orientable manifolds
- ► What can homology say about orientability?

An orientation of \mathbb{R}^n is a choice of a left- or right-handed coordinate system: A positive orientation is a basis that comes from bases change from the standard basis via a matrix of positive determinant; a negative orientation are those having a negative change-of-basis determinant.

Left-hand rule for negatively charged particles

Right-hand rule for positively charged particles

1, 0, 1. S

Base-chane-matin Basis' favire, Ly (IR) pais

det (A) = ±1

An orientation of a smooth manifold M is a continuous choice of an orientation of the tangent space T_xM .

An orientation of a surface S is a choice of normal vector per point that continuously varies over S. MILLER Finish B Rotation by π Reflection along y-axis ► An orientation should be preserved under rotation and translation and scaling ► An orientation should be reversed under reflection "Def: A strutue on M is mentation at xt Mif its reversed and reflection and present and Halxir) hour of C(X/Y) $H_n IM, M \{x\}$) $\simeq H_n (IR^n, IR^n) \{\varphi(x)\}$ $\simeq H_{n-1} (s^{n-1}) \simeq \mathbb{Z}$ ► By local triviality of an *n*-manifold *M* one gets $(H_n(M, M \setminus \{x\})) \cong H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{x\}) \cong H_{n-1}(S^{n-1}) \cong \mathbb{Z}$ wt, $\mathbb{Z} \xrightarrow{\pm 1} \mathbb{Z}$ refe. ▶ Rotations/reflections give maps from $H_{n-1}(S^{n-1})$ to itself, satisfying Rotation_{*}(± 1) = ± 1 Reflection_{*}(± 1) = ∓ 1

Let M be an n-manifold

- ▶ A local orientation at $x \in M$ is a choice $\alpha_x = \pm 1 \in H_n(M, M \setminus \{x\}) \simeq \mathbb{Z}$
- \blacktriangleright A (global) orientation is a consistent choice of α_x for all x, meaning:

where $\iota_y \colon (M, M \setminus U) \to (M, M \setminus \{y\})$ is the inclusion

 \blacktriangleright If an orientation exists for M, then M is called orientable

If Mis mentalle, then there are two different mentalings

If Mis mosth, the homologically oriest is the same of the "classical defs"

Meindrenstin: H_1 (M, M- (x)) ~ H_1 (R", 1R"-(x)) ~ 7

- ► The second point should be read as "Every x has a neighborhood in which the orientation is rotated or is translated or scaled but not reflected Compatibility condition formulated homologically
- ▶ The same definition works for homology with coefficients in an arbitrary PID

(M, M- [x] = R/27 +1 as choices of your of R

- R-orientable

Any Mis

Example: \$\frac{2}{2} - orientable\$

$$H_n(M)\cong egin{cases} \underline{\mathbb{Z}} ext{ if } M ext{ is orientable} \ \underline{0} ext{ if } M ext{ is not orientable} \end{cases}$$

very simple) condition o Cool of

 $H_*(\mathsf{torus}) \cong \mathbb{Z} \oplus t\mathbb{Z}^{\oplus 2} \oplus t^2\mathbb{Z}$

mp L

IRP'is orpietall (=>

RASE DE DE

A2 (1RP2)=0

 $H_*(\mathsf{Klein\ bottle})\cong \mathbb{Z}\oplus t(\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z})\oplus t^20$

Klein bottle's not metable

Hz (RPZ) = Z

tehr. (~) tehra Cule (~) vitu Dodo (~) Two

- ► The dual of a tetrahedron is a tetrahedron
- ► The dual of a cube is a octahedron
- ► The dual of a dodecahedron is a icosahedron

What does this mean?

The dual G^* of a plane graph G_* is obtained by reversing dimensions

- G^* has a vertex for each face of G_*
- G^* has an edge for each edge of G_* ; connecting adjacent faces
- G^* has a face for each vertex of G_*

- ightharpoonup Similarly, for any cell complex X_* one can define a dual cell complex X^*
- ▶ We have $\chi(X_*) = \pm \chi(X^*)$ since

If M is an orientable closed n-manifold, then for $0 \le k \le n$:

► Here
$$\frown$$
 is the pairing
$$H^k(M) \xrightarrow{\cong} H_{n-k}(M)$$
 has \longrightarrow 0

$$_ \frown _: H_k(M) \times H^l(M) \rightarrow H_{k-l}(M), \sigma \frown \phi = \phi(\sigma|[v_0, ..., v_l]) \sigma|[v_l, ..., v_k]$$

► There are many generalization, e.g. relaxing "orientable" or "closed"

[M] E H_n (M) fundamental class

This implies that the Hilbert–Poincaré polynomial of *M* is palindromic:

$$\int P\left(\bigcirc \right) = 1 + t \iff 1 \quad t$$

$$P\left(\bigcirc P \right) = 1 + 2t + t^2 \iff 1 \quad 2t \quad t^2$$

$$P\left(\bigcirc P^6 \right) = 1 + t^2 + t^4 + t^6 \iff 1 \quad 0 \quad t^2 \quad 0 \quad t^4 \quad 0 \quad t^6$$

universal coefficient theorem (UCT) for cohomology for all X and PID R:

$$0 \to \operatorname{Ext}(H_{k-1}(X),R) \to H^k(X,R) \to \operatorname{hom}(H_k(X),R) \to 0$$

is a split (non-naturally) short exact sequence

▶ Thus, in general

$$H^k(X) \cong \mathsf{hom}\left(H_k(X), \mathbb{Z}\right) \oplus \mathrm{Ext}\left(H_{k-1}(X), \mathbb{Z}\right)$$

lacktriangle Ext vanishes over $\mathbb Q$ and hom $(H_k(X),\mathbb Q)\cong H_k(X,\mathbb Q)$ if finite, which implies

$$H_k(M,\mathbb{Q}) \cong H^k(M,\mathbb{Q})$$

Paste this together with Poincaré duality

$$\underbrace{H_k(M,\mathbb{Q})\cong H^k(M,\mathbb{Q})\cong H_{n-k}(M,\mathbb{Q})}_{\text{---}}$$

 $H_*(\mathsf{Klein\ bottle})\cong \mathbb{Z}\oplus t(\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z})\oplus t^20$

1(02)
1-(V)= 20+20+2/22

$$H_*(torus) \cong \mathbb{Z} \oplus t\mathbb{Z}^{\oplus 2} \oplus t^2\mathbb{Z}$$

$$\#^*(toru) \cong \mathbb{Z} \oplus t\mathbb{Z}^{\oplus 2} \oplus f^2\mathbb{Z}$$

Let X be a closed oriented smooth manifold of dimension n. Let A and B be oriented smooth submanifolds of X of dimensions n-i and n-j respectively. Assume that A and B intersect transversely.

The images of A, B and $A \cap B$ under the inclusions into X define homology classes $[A], [B], [A \cap B]$. We denote their Poincaré duals by $[A]^*, [B]^*, [A \cap B]^*$. We now have:

Theorem. Cup product is Poincaré dual to intersection:

$$[A]^* \smile [B]^* = [A \cap B]^*.$$

Catch. Not all X are closed oriented smooth manifold.

Catch. Not all generators of cohomology arise from submanifolds (although counterexamples are somewhat hard to come by).

A sphere S^2 embedded in \mathbb{R}^3 divides \mathbb{R}^3 into an inside and an outside

Formally $\mathbb{R}^3\setminus\iota(S^2)$ is has two connected components for any $\iota\colon S^2\hookrightarrow\mathbb{R}^3$

A sphere S^2 embedded in \mathbb{R}^3 divides \mathbb{R}^3 into an inside and an outside. Really?

The more one thinks about it, the less clear it becomes!

- ▶ We can replace \mathbb{R}^3 with S^3 Stereographic Projection
- ▶ The number of connected component of $S^3 \setminus \iota(S^2)$ is dim $H_0(S^3 \setminus \iota(S^2))$
- ► Hence, reduced homology should satisfy

$$\dim ilde{\mathcal{H}}_0ig(S^3\setminus\iota(S^2), ilde{\mathbb{Q}}ig)=1$$

▶ So we need to compute dim $\tilde{H}_0(S^3 \setminus \iota(S^2), \mathbb{Q})$

$\widetilde{H}_i(S^n \setminus K) \stackrel{\cong}{\longrightarrow} \widetilde{H}^{n-i-1}(K)$

Alexande duality

This only depends on intrinsic properties of K

▶ For $K = \iota(S^{n-1}) \cong S^{n-1}$ one gets

 $ilde{H}_0(S^n\setminus S^{n-1})\stackrel{\cong}{\longrightarrow} ilde{H}^{n-1}(S^{n-1})\cong \mathbb{Z}$

► Thus, we get

 $\dim \widetilde{H}_0(S^n \setminus i(S^{n-1}), \mathbb{Q}) = 1$

► This is a consequence of (the a bit more general)

 $H_i(M, M \setminus K) \xrightarrow{\cong} H^{n-i}(K)$

where M is closed orientable n-manifold and where $K\subset M$ is compact and locally contractible

 $\widetilde{H}_{0}(S^{n})\simeq\widetilde{H}^{n-0-1}$ (S^{n-1})

Alexande Umalit

proof Jorda - Browne theorem

- lacktriangle A knot K is an embedding $S^1\hookrightarrow S^3\leadsto$ thickened into a torus $\overline{K}\cong T$ A rope
- ► One gets

$$ilde{\mathcal{H}}_i(\mathcal{S}^n\setminus\overline{K})\stackrel{\cong}{\longrightarrow} ilde{\mathcal{H}}^{n-i-1}(\overline{K})\cong ilde{\mathcal{H}}^{n-i-1}(\mathcal{T})$$

▶ This does not depend on the embedding, so can not distinguish knots

~ > homology can not distinged embeddings