EXERCISES 12: LECTURE ALGEBRAIC TOPOLOGY

Exercise 1. Show that $\pi_n(X, x_0)$ is a commutative group for $n \ge 2$. Hint: Have a look at the clock

Exercise 2. For $m \in \mathbb{Z}_{\geq 1}$ let X_m be the cell complex obtained by attaching a disc via $S^1 \to S^1$ winding *m*-times:

Compute the homology $H_*(X_m \times X_n)$ and the Hilbert–Poincare polynomial $P(X_m \times X_n)$ of the space $X_m \times X_n$. How do these compare to $H_*(X_m)$ and $H_*(X_n)$, respectively, to $P(X_m)$ and $P(X_n)$. Addendum:

- The answer will only depend on m and n.
- ▶ Hint: Here is a picture of the tensor product of the cell complexes:

Exercise 3. A closed *n*-manifold is called null-cobordant if it is the boundary of a compact (n + 1)manifold. For example, S^1 is null-cobordant:

Decide whether $\mathbb{R}P^2$ is null-cobordant or not.

Hint: The Euler characteristic does the job https://math.stackexchange.com/questions/1385708

Exercise 4. Show that $\pi_n(S^n) \cong \mathbb{Z}$.

Addendum:

	π1	π2	π3	π4	π ₅	π ₆	π ₇	π 8	π9	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
S 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S1	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	Z	Z	\mathbb{Z}_2	\mathbb{Z}_2	Z ₁₂	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	Z ₁₅	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84}\!\!\times\!\!\mathbb{Z}_2^2$	\mathbb{Z}_2^2
S ³	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	Z ₁₂	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	Z ₁₅	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84}\!\!\times\!\!\mathbb{Z}_2^2$	\mathbb{Z}_2^2
S ⁴	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}^{\times}\mathbb{Z}_{12}$	\mathbb{Z}_2^2	\mathbb{Z}_2^2	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}_{120} \times \mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84}\!\!\times\!\!\mathbb{Z}_2^5$
S ⁵	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	Z ₃₀	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}_{72} \times \mathbb{Z}_2$
S ⁶	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	Z	\mathbb{Z}_2	Z ₆₀	$\mathbb{Z}_{24} \times \mathbb{Z}_{2}$	\mathbb{Z}_2^3
S ⁷	0	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0	\mathbb{Z}_2	\mathbb{Z}_{120}	\mathbb{Z}_2^3
S ⁸	0	0	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{120}$

▶ The higher homotopy groups of spheres are notoriously hard to compute, and only partial results are known, *e.g.*

- One problem is that the $\pi_k(S^n)$ appear to be pretty random, in particular, as one goes to the right along a row. However, there are a few patterns, *e.g.*:
 - \triangleright The groups below the jagged black line are constant along the diagonals (as indicated by the red, green and blue coloring).
 - ▷ Most of the groups are finite. The only infinite groups are either on the main diagonal or immediately above the jagged line (highlighted in yellow).
- ▶ The exercise therefore asks to verify the leftmost non-trivial blue diagonal.
- ▶ The exercises are optimal and not mandatory. Still, they are highly recommend.
- ▶ There will be 12 exercise sheets, all of which have four exercises.
- ▶ The sheets can be found on the homepage www.dtubbenhauer.com/lecture-algtop-2021.html.
- ▶ If not specified otherwise, spaces are topological space, maps are continuous *etc.*
- ▶ There might be typos on the exercise sheets, my bad, so be prepared.