ASSIGNMENT 2: LECTURE ALGEBRAIC TOPOLOGY

Exercise 1. Compute the homology $H_*(G)$ of the Petersen graph G:

Can you guess what the homology of a general graph is? Hint: The following two pictures should be helpful.

Exercise 2. Classify the Platonic solids by using that they are cell complexes for the sphere S^2 and that $\chi(S^2) = 2$.

Addendum:

- ▶ Note that Platonic solids have a definition and are not arbitrary polyhedra: they are convex regular polyhedron in \mathbb{R}^3 .
- ▶ Hint: We know the answer, so let us make a table where m, n are defined by mV = 2E = nF:

24						
		m	n	V	E	F
	Tetrahedron	3	3	4	6	4
	Cube	3	4	8	12	6
	Octahedron	4	3	6	12	8
	Dodecahedron	3	5	20	30	12
	Icosahedron	5	3	12	30	20

Observe that $\frac{1}{2} < \frac{1}{m} + \frac{1}{n}$ holds.

Exercise 3. For $g \ge 1$ let $M_{g,0}^-$ denote the closed non-orientable surface of genus g defines via its fundamental polygon, *i.e.* a 2g-sided polygon with attaching word $a_1^2 \dots a_g^2$. For example, for g = 4 we have:

Compute the homology $H_*(M_{g,0}^-)$ and the Hilbert–Poincare polynomial $P(M_{g,0}^-)$.

Hint: Note that $M_{1,0}^- \cong \mathbb{R}P^2$ and $M_{2,0}^-$ is the Klein bottle, and recall how to calculate their homologies. (Beware that the above are not the standard presentations of these two surfaces: a surface can be defined by different fundamental polygons.)

Exercise 4. Compute the cohomology ring $H^{\bullet}(T)$ of the torus T from the definitions (*i.e.* not going to the intersection ring).

Addendum:

 \blacktriangleright You can assume that T is defined via the following simplicial structure:

▶ Hint: The main calculations in the intersection ring are

The main point is to find expressions of [A] and [B] in $C^*(T)$. It is then not hard to verify that the intersection calculation is reflected in singular cohomology.

- ▶ The second assignment is due 05.Nov.2021, latest 11:59pm.
- ▶ Please upload your answers to Canvas.
- ▶ The material from all lectures can be used freely, including the relevant sections in Hatcher.