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Definition (Springer fiber of type A)
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Oy ~rrmanns Bé;Lm Springer fiber ~~ H* (B, ,C)

m

Definition (Springer fiber of type A)
x: C™ — C™ nilpotent endomorphism of Jordan type A

By, ={{0} CRCRC...CF,=C"|2F,C F;_1}
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partitions A of m

1:1 1:1
GL,,(C)-conjugacy classes of  deeper/direct complex, finite-dimensional,
nilpotent endomorphisms of C™  connection? irreducible S,,,-representations

(up to isomorphism)
O\~ B Springer fiber ~wens H*(Bg, ,C)
Definition (Springer fiber of type A)
x: C™ — C™ nilpotent endomorphism of Jordan type A

By, ={{0} CRCRC...CF,=C"|2F,C F;_1}

Theorem (Springer, 1978)

There exists a graded Sp,-action on H*(Bg,, ,C) such that H*P(B, ,C) is
the irreducible S;,-representation labeled by A. This yields a correspondence

Trrkid(S,,,) L {nilpotent endomorphisms of C™} /GLm((C)'
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G connected, reductive, complex, algebraic group, g = Lie(G)
~ Wa Weyl group
Theorem (Gerstenhaber, 1961)

The Spam-conjugacy classes of nilpotent elements in sp,,,, are in bijective
correspondence with partitions of 2m in which odd parts occur with even
multiplicity.
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G connected, reductive, complex, algebraic group, g = Lie(G)

~ Wa Weyl group
Theorem (Gerstenhaber, 1961)

The Spam-conjugacy classes of nilpotent elements in sp,,,, are in bijective
correspondence with partitions of 2m in which odd parts occur with even
multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an
element in the conjugacy class.

partitions of 4:

(1,1,1,1), (2,1,1), (2,2), (3,1), (4)
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~ Wa Weyl group
Theorem (Gerstenhaber, 1961)

The Spam-conjugacy classes of nilpotent elements in sp,,,, are in bijective
correspondence with partitions of 2m in which odd parts occur with even
multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an
element in the conjugacy class.

partitions of 4:
(1,1,1,1), (2,1,1), (2,2), (3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations
of the Weyl group Ws,,,,. are in bijective correspondence with bipartitions of m.
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G connected, reductive, complex, algebraic group, g = Lie(G)

~ Wa Weyl group
Theorem (Gerstenhaber, 1961)

The Spam-conjugacy classes of nilpotent elements in sp,,,, are in bijective
correspondence with partitions of 2m in which odd parts occur with even
multiplicity. The parts of the partition encode the sizes of the Jordan blocks of an
element in the conjugacy class.

partitions of 4:
(1,1,1,1), (2,1,1), (2,2), (3,1), (4)

Theorem (Folklore)

The isomorphism classes of complex, finite-dimensional, irreducible representations
of the Weyl group Ws,,,,. are in bijective correspondence with bipartitions of m.

bipartitions of m=2:

(H o) 0. @ oo (o.H)
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G connected, reductive, complex, algebraic group, x € g = Lie(G) nilpotent
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G connected, reductive, complex, algebraic group, x € g = Lie(G) nilpotent

~ Wg Weyl group ~ Ay = Cg(x)/C2(z) component group
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G connected, reductive, complex, algebraic group, x € g = Lie(G) nilpotent

~ Wg Weyl group ~ Ay = Cg(x)/C2(z) component group
Definition (Springer fiber)

& = {Borel subgroups B C G | x € Lie(B)}, x € g nilpotent
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G connected, reductive, complex, algebraic group, x € g = Lie(G) nilpotent

~ Wg Weyl group ~ Ay = Cg(x)/C2(z) component group
Definition (Springer fiber)

& = {Borel subgroups B C G | x € Lie(B)}, x € g nilpotent

Theorem (Springer, 1978)

» There exist grading-preserving, commuting actions of W¢ and A, on
H*(Bg, C).
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Definition (Springer fiber)

& = {Borel subgroups B C G | x € Lie(B)}, x € g nilpotent

Theorem (Springer, 1978)

» There exist grading-preserving, commuting actions of W¢ and A, on
H*(BE,C).
» The decomposition

Htop Bm EDHWP BG’

into non-zero A_-isotypic subspaces is a decomposition into irreducible
Wg-representations.
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G connected, reductive, complex, algebraic group, x € g = Lie(G) nilpotent

~ Wg Weyl group ~ Ay = Cg(x)/C2(z) component group
Definition (Springer fiber)

& = {Borel subgroups B C G | x € Lie(B)}, x € g nilpotent

Theorem (Springer, 1978)

» There exist grading-preserving, commuting actions of W¢ and A, on
H*(BE,C).
» The decomposition

Htop Bm EDHWP BG’

into non-zero A_-isotypic subspaces is a decomposition into irreducible
Wg-representations.

» This yields the Springer correspondence

Irrkd (We) — {nilpotent elements in g} /» x Irrhd (A4,).

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017

4/17



» The Wg-action on cohomology is not induced from an action on the space
(restrict action on Springer sheaf to its stalks).
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» The Wg-action on cohomology is not induced from an action on the space
(restrict action on Springer sheaf to its stalks).

» The topology and geometry of the Springer fiber is poorly understood (in
general singular, many irreducible components).

NOW: G =50, Wae=Wp,. (type D)

Wp

m
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» The Wg-action on cohomology is not induced from an action on the space
(restrict action on Springer sheaf to its stalks).

» The topology and geometry of the Springer fiber is poorly understood (in
general singular, many irreducible components).

NOW: G =50, Wae=Wp,. (type D)

generators: Sg, S1,- .-, Sm—_1

relations: (s;s;)™% =e

1 ifi=j, 1
. .. 2 3 m—1
NUNDUWRERE VRS & Ifz—wn>—~~--~
" 2 else. 0
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» The Wg-action on cohomology is not induced from an action on the space

(restrict action on Springer sheaf to its stalks).

» The topology and geometry of the Springer fiber is poorly understood (in

general singular, many irreducible components).

NOW:

G =

SOQm WG = WDm

(type D)

subgroup generated

by s1,..

generators: sg, $1, -

<3 Sm—1

<y 8m—1 relations: (s;s;)™% =e
é 1 ifi=j,
mi; =<3 ifi—7in
Sm g WDm(—\/v\Nv\, J
2 else.

0
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» The Wg-action on cohomology is not induced from an action on the space

(restrict action on Springer sheaf to its stalks).

» The topology and geometry of the Springer fiber is poorly understood (in

general singular, many irreducible components).

NOW: G =50, Wae=Wp,. (type D)

subgroup generated generators: Sg,81,...,Sm—1
by s1,...,8m—1 relations: (s;s;)™% =e
% 1 ifi=j, &
o o0N2 3 m-—1
S C Wp eannan mi; =3 ifi—jin e
m = m
2 else. 0

Theorem (Lusztig, 2004)

There exists an isomorphism of C[Wp, ]-modules

H*(Bgor..»C) = C&c¢s,) CWn,,] -

Springer representation induced trivial module
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{standard basis by}

b, = > x b

{Kazhdan-Lusztig basis b, }

Question
Where else do the a , appear? Why are they interesting? J
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{standard basis by}
b, = 5 axubx
{Kazhdan-Lusztig basis b, }

Question
Where else do the a , appear? Why are they interesting?

» Infinite-dimensional representation theory of Lie algebras.
Of(502:(C))  [M(N): L(p)] = aru

(Kazhdan-Lusztig, Beilinson—Bernstein, Brylinski-Kashiwara,
Elias—Williamson)
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{standard basis by}
b, = 5 axubx
{Kazhdan-Lusztig basis b, }

Question
Where else do the a , appear? Why are they interesting?

» Infinite-dimensional representation theory of Lie algebras.
Of(502:(C))  [M(N): L(p)] = aru

(Kazhdan-Lusztig, Beilinson—Bernstein, Brylinski-Kashiwara,
Elias—Williamson)
» Non-semisimple representation theory of the Brauer algebra.

Br,,(6)-mod  (d € Z) [AN): L(p)] = axp
(Martin, Cox—DeVisscher, Ehrig-Stroppel)
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{standard basis by}
b, = 5 axubx
{Kazhdan-Lusztig basis b, }

Question
Where else do the a , appear? Why are they interesting?

» Infinite-dimensional representation theory of Lie algebras.
Of(502:(C))  [M(N): L(p)] = aru

(Kazhdan-Lusztig, Beilinson—Bernstein, Brylinski-Kashiwara,
Elias—Williamson)
» Non-semisimple representation theory of the Brauer algebra.

Br,,(6)-mod  (d € Z) [AN): L(p)] = axp
(Martin, Cox—DeVisscher, Ehrig-Stroppel)

Question

Can we explicitly compute the ay ,7?
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{standard basis by}

b, = 5 axubx

{Kazhdan-Lusztig basis b, }

{ {A, V}-sequences, }

length m, #(A) even
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0] { {A, V}-sequences, }

{standard basis by} ————— | |onath m, #(A) even

{Kazhdan-Lusztig basis b, }




. é {A, V}-sequences,
{standard basis by} —— { length m, #(A) even

<

{Kazhdan-Lusztig basis b, } —

{ cup diagrams on m vertices, }




o { {A, V}-sequences, }

length m, #(A) even

by =225 axuba

{Kazhdan-Lusztig basis b, } % {

cup diagrams on m vertices, }

# () +# (U) even




o { {A, V}-sequences, }

length m, #(A) even

l—)l‘f = Z)\ a)‘aﬂ'bA

{Kazhdan-Lusztig basis b, } % {

cup diagrams on m vertices, }

# () +# (U) even




[0 { {A, V}-sequences, }

length m, #(A) even

§ b, = 5 axubx

{Kazhdan-Lusztig basis b, } —

<

{ cup diagrams on m vertices, }

4 (+) T4 (U) even

Example: (m=4)
VV VWV, VVAA, VAVA, VAAV, AVVA, AVAV, AAVV, AAAA

g B N U Sl I B Bt

|||| v U W &/ w

Theorem (Lejczyk—Stroppel, 2013)

1, if 20a) Grented (VA) (AN A
=1 ¥ ’
v 0, else. U J \(.)( J T J +

vy
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[0 { {A, V}-sequences, }

length m, #(A) even

b, =" axubx
§ ' 8 cup diagrams on m vertices,
{Kazhdan-Lusztig basis b, } — % (+) Ly (U) even = Ckp,(m)

<

Example: (m=4)
VV VWV, VVAA, VAVA, VAAV, AVVA, AVAV, AAVV, AAAA

g B N U Sl I B Bt

|||| v U W &/ w

Theorem (Lejczyk—Stroppel, 2013)
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Can we describe the C[Wp,, |-module C ®¢g,,; C[Wp,,] using cup diagrams?




Question
Can we describe the C[Wp,, |-module C ®¢g,,; C[Wp,,] using cup diagrams?

Proposition (Lejczyk—Stroppel, 2013)
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Question
Can we describe the C[Wp,, |-module C ®¢g,,; C[Wp,,] using cup diagrams?

Proposition (Lejczyk—Stroppel, 2013)

C ®¢is,.] CWp,.] = C[Ckr(m)] , b, — ¥(b,)

C[Wp,, ]-action on C[Ckr,(m)]:
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Question
Can we describe the C[Wp,,|-module C ®¢(g,,} C[Wp,,] using cup diagrams?

Proposition (Lejczyk—Stroppel, 2013)

C @cys,,) CWp,,] = ClCku(m)] , b, — ¥(b,)

C[Wp,, ]-action on C[Ckr,(m)]:

12 iit1
o/ U
I g

60280—1:{.\ ‘ 2750

61':87;—1:‘ ‘

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 8 /17



Question
Can we describe the C[Wp,,|-module C ®¢(g,,} C[Wp,,] using cup diagrams?

Proposition (Lejczyk—Stroppel, 2013)

C @cys,,) CWp,,] = ClCku(m)] , b, — ¥(b,)

C[Wp,, ]-action on C[Ckr,(m)]:

1 2 i\ij—l
I g
1. Pute; =s; — 1 on top of 1/’(@;)-

‘ i#0

61':87;—1:‘ ‘
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Question
Can we describe the C[Wp,,|-module C ®¢(g,,} C[Wp,,] using cup diagrams?

Proposition (Lejczyk—Stroppel, 2013)

C @cys,,) CWp,,] = ClCku(m)] , b, — ¥(b,)

C[Wp,, ]-action on C[Ckr,(m)]:
12 i
S

1. Pute; =s; — 1 on top of 1/’(@;)-
2. Apply relations:
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Question
Can we describe the C[Wp,,|-module C ®¢(g,,} C[Wp,,] using cup diagrams?

Proposition (Lejczyk—Stroppel, 2013)

We have an isomorphism of C[Wp, ]-modules

C @cys,,) CWp,,] = ClCku(m)] , b, — ¥(b,)

C[Wp,, ]-action on C[Ckr(m)]:
12 i
S

1. Pute; =s; — 1 on top of ¢(bu)'
2. Apply relations:
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, €0 , €2 €1, €3
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€0 €2 'K @il €5 \/‘
0 €2
el
Remark
There exists a filtration

of C)Wp,,]-modules, where

C[Ckr(m)], = spanc{a € Ckr(m) | #(cups) > n}.

A. Wilbert (HIM) Two-block Springer fibers of types C & D November 30, 2017 9 /17



L1 S iy &
€2 %; | ~ &\ eowlez
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€0 €9 ‘/A" €1, E3 (\521
er
Remark

There exists a filtration
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LI 5 cilly \&

A\ A
€3 U
€2 %; |
U||60+U|¥2 Uueues
¥ S AV N R
€o () s €1,¢€3
er
Remark

There exists a filtration

of C)Wp,,]-modules, where

o H@

Y

K
I
N

€2

= C[Ckw(m)]

C[Ckr(m)], = spanc{a € Ckr(m) | #(cups) > n}.
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Remark (cont.)
The subquotients

ClCkr(m /(C Cis(m)]ps1 = sPanc{[a] | a € Ckr(m), #(cups) = n}

are irreducible C[Wp, ]-modules with C[Wp, ]-action given by:

H \ st=| [ )| aro
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Remark (cont.)
The subquotients

ClCkr(m /(C Cis(m)]ps1 = sPanc{[a] | a € Ckr(m), #(cups) = n}

are irreducible C[Wp, ]-modules with C[Wp, ]-action given by:

H \ st=| [ )| aro

{O\E=0 LNE=0
Moreover, we have an isomorphism of C[W)p, ]-modules

H*(Bgg,. .C) = @(C [Ckr(m /C CkL(m)]nt1-
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space Boy" ? Does this tell us anything about the topology of BZ2™ (or even
SOgm y g gy SOom

more generally Bg”g;j’k)7
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space Boy" ? Does this tell us anything about the topology of BZ2™ (or even
SOgm y g gy SOom

more generally Bg’g;j’k)'?

.‘_.p = (0,0,1) Crer, (m)

S?2 C R3
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space B, 7 Does this tell us anything about the topology of B¢y  (or even

more generally Bé’g;k’k)?

Com—ix(m) C Ckr(m)
—_———

diagrams with | £ | cups
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space B, 7 Does this tell us anything about the topology of B¢y  (or even

more generally Bé’g;k’k)?

ac  Coppr(m) CCxr(m)
—_———

diagrams with | £ | cups
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space B, 7 Does this tell us anything about the topology of B¢y  (or even

more generally Bé’g;k’k)?

_.-p = (07 0, 1) ae€ Cgmfk,k(m) C CKL(m)
: —_——

diagrams with | £ | cups

x;=ux;, Iifimg,
x; = —x;, if i—J,

Sa =X (z1,...,2m) € (82)m
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space B, 7 Does this tell us anything about the topology of B¢y  (or even

more generally Bé’g;k’k)?

_.-p = (07 0, 1) ae€ Cgmfk,k(m) C CKL(m)
: —_——

diagrams with | £ | cups

Tj =T, IfZ-I—j7
Tj = —Tj, if i—j,
Sa: (I17~-~;zm)€(82)m Zr; =P, lfl_."a
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space B, 7 Does this tell us anything about the topology of B¢y  (or even

more generally Bé’g;k’k)?

_.-p = (07 0, 1) ae€ Cgmfk,k(m) C CKL(m)
: —_——

diagrams with | £ | cups

x;=ux;, Iifimg,

Tj = —Tj, if i—j,
Sa: (I17~-~;zm)€(82)m Zr; =P, lfl_."a
x; = —p, if i— rightmost ray,
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space B, 7 Does this tell us anything about the topology of B¢y  (or even

more generally Bé’g;k’k)?

_.-p = (07 0, 1) ae€ Cgmfk,k(m) C CKL(m)
: —_——

diagrams with | £ | cups

x;=ux;, Iifimg,

Tj = —Tj, if Z_j,
Sa =1 (x1,...,zm) € (SH™ |2y =p, if im,
x; = —p, if i—rightmost ray,
x; =¢q, if i—+ not rightmost ray.
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space B, 7 Does this tell us anything about the topology of B¢y  (or even

more generally Bé’g;k’k)?

_.-p = (07 0, 1) ae€ Cgmfk,k(m) C CKL(m)
: —_——

diagrams with | £ | cups

x;=ux;, Iifimg,

$] = —Z;, If Z_j, k
Sa={ @1, tm) € )" | =p, i iwi, = (57)*

x; = —p, if i—rightmost ray,

x; =¢q, if i—+ not rightmost ray.
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Question

Is the cup diagram combinatorics describing H*(B?é?m, ) already visible on the

space B, 7 Does this tell us anything about the topology of B¢y  (or even

more generally Bé’g;k’k)?

_.-p = (07 0, 1) ae€ Cgmfk,k(m) C CKL(m)
: —_——

diagrams with | £ | cups

Sgrg;f,k — U Sa C (SQ)m,

acCapm—k, k(M)

x;=ux;, Iifimg,
x; = —x;, if i—J,

k
Sa =< (x1,...,Tm) €SH™ |2y =p, ifim, %(SQ)L2J
x; = —p, if i— rightmost ray,
x; =¢q, if i— not rightmost ray.
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Theorem (2015)

There exists a homeomorphism 82m e B2m *F such that the images of the
Sa are the irreducible components.
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Theorem (2015)

. . om—k, 2m—k,k .
There exists a homeomorphism S27 %k o g2Zm=kk b that the images of the
SOQ,,L SOZm

Sa are the irreducible components.

Example: (m =4, A = (5,3))
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Theorem (2015)

. . 2m—k,k ~ 1p2m—k.k .
There exists a homeomorphism S27 %k o g2Zm=kk b that the images of the
SOQ," SOZm

Sa are the irreducible components.

Example: (m =4, A = (5,3))

IS I A I
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Theorem (2015)

There exists a homeomorphism S?g;f’k = B?g;kk such that the images of the

Sa are the irreducible components.

UL V] Y] Y
» Sa={(z,—z,p,q) | z €S?} » Sp = {(z,z,—p,q) | x € S?}
» Se={(p,z,—x,q) | z € S?} » Sqa={(p,q,z,—2) | x € S?}
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Theorem (2015)
2m—k,k ~

There exists a homeomorphism Sgp,, ™" & B?gz_kk such that the images of the
Sa are the irreducible components.

Example: (m =4, A = (5,3))

- — Y _ \
e I e
» Sa={(z,—2,p,q) | € S?} » Sp = {(z,2,—p,q) | x € S?}
» Se={(p,z,—x,q) | z € S?} » Sqa={(p,q,z,—2) | x € S?}
Se ’ Se S,
S
s3, = Wq;
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2m—k,k ~ p2m—k—1,k—1

There exists an isomorphism of varieties Bg,, ™ = Bg,, =




Theorem (2015)
2m—k,k ~ p2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy
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Theorem (2015)
2m—k,k ~ p2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).
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Theorem (2015)
2m—k,k ~ p2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

Perv (TE)

TN

Perv (Y5 _,)
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Theorem (2015)
2m—k,k ~ p2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

Perv (TE)
(Ehrig-Stroppel) TN

Perv (Y5 _,)
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Theorem (2015)
2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)
Philosophy
We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

Perv (TE)
(Ehrig-Stroppel) TN
Perv (Y5 _,)
“cup diagram side”
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Theorem (2015)
2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

Perv (TE) Db (Coh(Y,2))
(Ehrig-Stroppel) TN NT
Perv (Y5 _,) Db (Coh(Y,S_1))

~

“cup diagram side”
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Theorem (2015)
2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

Perv (TE) Db (Coh(Y,2))
(Ehrig-Stroppel) TN NT (Li)
Perv (Tﬁ_l) Db (COh(YnC;—l))

~

“cup diagram side”
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Theorem (2015)
2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

Perv (TE) Db (Coh(Y,2))
(Ehrig-Stroppel) TN NT (Li)
Perv (Y5 _,) Db (Coh(Y,S_1))
“cup diagram side” “Springer fiber side”
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Theorem (2015)
2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

Perv (TE) -------- » Db (Coh(Y,D))
(Ehrig-Stroppel) TN NT (Li)
Perv (Y5 _,) Db (Coh(Y,S_1))
“cup diagram side” “Springer fiber side”
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Theorem (2015)
2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

“(Stroppel-Webster)”

Perv (TE) -------- » Db (Coh(Y,D))
(Ehrig-Stroppel) TN NT (Li)
Perv (Y5 _,) Db (Coh(Y,S_1))
“cup diagram side” “Springer fiber side”
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2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

“(Stroppel-Webster)”

Perv (TE) -------- » Db (Coh(Y,D))
(Ehrig-Stroppel) TN NT (Li)
Perv (YE_|) -------- » D (Coh(Y,S 1))
“cup diagram side” “Springer fiber side”
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Theorem (2015)
2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories

Dy,-mod =~ Perv (Y5) o Of (502, (C)).

“(Stroppel-Webster)”

Perv (TE) -------- » Db (Coh(Y,D))
(Ehrig-Stroppel) TN NT (Li)
Perv (YE_|) -------- » D (Coh(Y,S 1))

IHJJJJ} Langlands duality RHILLL“

“cup diagram side” s “Springer fiber side”
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Theorem (2015)
2m—k,k ~ pp2m—k—1,k—1

There exists an isomorphism of varieties Bg,, " = Spatm1)

Philosophy

We have equivalences of categories
Dy,-mod =~ Perv (Y5) o Of (502, (C)).
We have a “commutative diagram”

“(Stroppel-Webster)”

Perv (TE) -------- » Db (Coh(Y,D))
(Ehrig-Stroppel) TN NT (Li)
Perv (YE_|) -------- » D (Coh(Y,S 1))

IHJJJJ} Langlands duality RHILLL“

“cup diagram side” s “Springer fiber side”
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Question

Can we reconstruct the Springer representation in an elementary way using the
topological model Sgi" 7
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Can we reconstruct the Springer representation in an elementary way using the
topological model Sgi" 7

m,m
SO2m,
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Question

Can we reconstruct the Springer representation in an elementary way using the
topological model Sgi" 7

)™ D CWp,]

m,m
SO2m,
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Question
Can we reconstruct the Springer representation in an elementary way using the
topological model Sgi" 7

action on (S?)™:
. 7xm) = (—1;27 —L1, L3y - 7$m)

So.(LEl,..
.,Ii+17$i7...,1‘m) ’L#O

Si(x1, 0 ) = (21, ..

{

)™ D CWp,]

m,m
SO2m,
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Question

Can we reconstruct the Springer representation in an elementary way using the

topological model Sgi" 7

induced by action on (S?)™:
S0-(T1y -y Tm) = (T2, —T1, T3, ..., Tim)
S0 @1 r ) = (E10 oo Tig1, T r) O

{

H.((8%)™,C) D CWp, ]

]

H.(Ss6,,,,C)
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Question

Can we reconstruct the Springer representation in an elementary way using the

topological model Sgi" 7

induced by action on (S?)™:
S0-(T1y -y Tm) = (T2, —T1, T3, ..., Tim)
S0 @1 r ) = (E10 oo Tig1, T r) O

{

H.((8%)™,C) D CWp, ]

]

H.(SE5T .C)D) CWp, ]
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Question

Can we reconstruct the Springer representation in an elementary way using the

topological model Sgi" 7

induced by action on (S?)™:
S0-(T1y -y Tm) = (T2, —T1, T3, ..., Tim)
Si'(l‘l; s axm) = ('rlv sy i1, Ly - e e ,Z"m) i#0

{

H.((8%)™,C) D CWp, ]

] é action restricts

H.(SE5T .C)D) CWp, ]
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Question

Can we reconstruct the Springer representation in an elementary way using the

topological model Sgi" 7

induced by action on (S?)™:
S0-(T1y -y Tm) = (T2, —T1, T3, ..., Tim)
Si.(l‘l, s axm) = ('rlv sy i1, Ly - e e ,J}’m) i#0

{

H.((8%)™,C) D CWp, ]

] é action restricts

H.(SE5T .C)D) CWp, ]

(The component group for Bgy!" s trivial.)
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50m = Uaccwy (m) Ca cell partition



m,m e
S50, = HaEC’KL(m) Cj, cell partition

Ty =, v # —p, ifiwg,
Tj = —Tiy T4 7é p, if Z_ja ~ R2'#(CUPS)
T, =p, if a1,
T, =-—p, if i—.

Ca=< (z1,...,2m) € (SQ)m
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m,m e
S50, = HaEC’KL(m) Cj, cell partition

Tj = T4, Ty #—p,
Ca= (xl,...,xm) c (SZ)m T; = —XT;, T; 7ép’

Ti =D,

Ti= =D,

if i-
if Z_] ) ~ RZ#(cups)
ifim, [

if i—.

H.(Sgp) ,C) = spanc{[Ca] } (hom. degree = 2 - #(cups))

A. Wilbert (HIM) Two-block Springer fibers of types C & D

November 30, 2017 15 /17



m,m __ .
Ss0n = HaECKL(m) Cj, cell partition

Ty =, v # —p, ifiwg,

_ 2\m | Lj = —L4, Ty #p, if —7J, ~ T2 -#(cups)
Ca (xla"'axm)e(g) Ti=p, IfZ-I'I, =R
T, =-—p, if i—.

H.(Sgp) ,C) = spanc{[Ca] } (hom. degree = 2 - #(cups))

Theorem (2016)

We have an isomorphism of C[Wp, |-modules

Hjn(Sgon ,C) =, ClCkL(m /(c CkL(M)]ns1 » [Cal = [a].
In particular,

H.(Sgp. ,C) = C[Ckr(m)] = C &c(s,,) CWbp,,] = H*(Bgg,. ,C).
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Question

How can we reconstruct the component group action on the topological model?
What is its diagrammatic description?
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Question

How can we reconstruct the component group action on the topological model?
What is its diagrammatic description?

T € 5Py(,,—1) be nilpotent of Jordan type (m —1,m — 1)
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Question

How can we reconstruct the component group action on the topological model?

What is its diagrammatic description?

T € 5Py(,,—1) be nilpotent of Jordan type (m —1,m — 1)

o ) {e} if m is even,

“ T\ zZ/2Z if mis odd.
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Question

How can we reconstruct the component group action on the topological model?

What is its diagrammatic description?

T € 5Py(,,—1) be nilpotent of Jordan type (m —1,m — 1)

o ) {e} if m is even,

“ T\ zZ/2Z if mis odd.

(s2)m

|

m,m

SO2m
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T € 5Py(,,—1) be nilpotent of Jordan type (m —1,m — 1)
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“ T\ zZ/2Z if mis odd.
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Question

How can we reconstruct the component group action on the topological model?

What is its diagrammatic description?

T € 5Py(,,—1) be nilpotent of Jordan type (m —1,m — 1)

o ) {e} if m is even,

7 z/2Z if mis odd.

action on (S?)™:

(=D (21, xm) = (—x1, T, ..., Tpy)

¢
Hm D A

|

m,m

SO2m
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Question

How can we reconstruct the component group action on the topological model?
What is its diagrammatic description?

T € 5Py(,,—1) be nilpotent of Jordan type (m —1,m — 1)

~ J{e} if m is even,
7 z/2Z if mis odd.

induced by action on (S?)™:

(=D (21, xm) = (—x1, T, ..., Tpy)

¢
H(()™ 0D A,

|

H.(S56,,,+C)
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Question

How can we reconstruct the component group action on the topological model?
What is its diagrammatic description?

T € 5Py(,,—1) be nilpotent of Jordan type (m —1,m — 1)

~ J{e} if m is even,
7 z/2Z if mis odd.

induced by action on (S?)™:

(=D (21, xm) = (—x1, T, ..., Tpy)

¢
H(()™ 0D A,

|

H(Sg . C)D A,
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Question

How can we reconstruct the component group action on the topological model?

What is its diagrammatic description?

T € 5Py(,,—1) be nilpotent of Jordan type (m —1,m — 1)

A {e} if m is even,
7 z/2Z if mis odd.

induced by action on (S?)™

(=D (21, xm) = (—x1, T, ..., Tpy)

¢
mC)D A,

(s?)m,
] g action restricts

S0, D Ay
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a € Ckr(m), 1 < i connected by a cup, leftmost ray in a connected to vertex j
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a € Ckr(m), 1 < i connected by a cup, leftmost ray in a connected to vertex j

*

a a

—
=
—

i .

—
—
—
—

¢
C

—
—
—_
—

C
SIS

C
C

—
—
—_
—

¢
C
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a € Ckr(m), 1 < i connected by a cup, leftmost ray in a connected to vertex j

*

a a

—
=
—

i

afe
C

—
—
—
—

—_
—

_— | ———

—
—

C
C

—_
—

¢
C

—
—

Theorem (2016)
The Z/2Z-action on H.(Sgp. ,C) (m odd) is given by

Ca if 1 is connected to a ray,
(1) [Ca] = {[ |

[Cax] if 1 is conntected to a cup.
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