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Over the last 23 years we witnessed history of mathematics in its making with Khovanov’s discovery of the
celebrated categorification of the Jones polynomial [Khoo]. In 2023 google scholar lists more than 1450
citations to [Khoo], while Scopus/MathSciNet list about 530 citations, all phenomenal numbers for
mathematics, including citations beyond mathematics from fields such as molecular chemistry. This
discovery was transformative, and since then it has become clear that functorial actions provide the right
language for understanding Khovanov’s work, and its generalizations, and these actions have now been
axiomatized into the emerging field of categorical or 2-representation theory, which is a crucial branch of
categorification. (See e.g. [CRo8], [EGNO1s5] or [Ma17] for various flavors of 2-representation theory.)

This new field is at heart of an explosion of new discoveries across a range of fields including algebraic
geometry, combinatorics, representation theory, low-dimensional topology (see also Aspect (B)), and more
recently in cryptography and machine learning (see also Aspect (C)) and it is expected that there will be future
applications in physics, chemistry, and potentially cybersecurity.

My research is focused on three aspects involving 2-representation theory:
(A) The abstract theory: allow infinite 2-categories and work in finite characteristic.
(B) Low-dimensional topology: link homologies and 2-representations of braid groups.

(C) Applications: diagram categories and linear attacks, and representation theory in machine learning.
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Where do | stand?

Here is a very biased map of pure mathematics (this lives on a torus - if you exit from the top you reenter
from the bottom, and similarly for left-right):
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The black circle indicates that I live in algebra but with large pieces in topology and category theory as
well. The dashes line is where [ apply categorical representation theory. Recently I added cryptography
and machine learning to the range of my applications, which does not quite fit onto the map.

Background

The study of group actions is of critical importance in mathematics and related fields such as physics and
chemistry. Its significance can hardly be overestimated.

The approach of Frobenius ~1895, Burnside ~1900 and many others, nowadays called representation
theory (or I would say the representation theory of the 20th century), is to linearly approximate such
actions. For example, let G be a group or a ring or an algebra etc. Representation theory is the study of
linear group actions

G — End(V), g— M(g) or G~ V.

That is, representation theory assigns to each group element a matrix M (g) acting on a vector space V -
its linear shadow. The representation theory approach is that classifying linear GG-actions has, in contrast
to arbitrary group actions, a satisfactory answer for many groups.



Background (continued)

The basic building blocks V; of such actions tell us a lot about the problem we started with. (The strategy
of representation theorists is summarized below.) In fact, experience tells us that the collection of such

linear shadows is an interesting structure in its own right and maybe even more worthwhile to study
than G itself.
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Developing over the past century (and still in development), Frobenius and Burnside’s theory is pervasive
across many fields of mathematics. The success of representation theory has led to numerous general-
izations and applications, e.g. in the aforementioned molecular chemistry or quantum physics, but also
in engineering such as robotics. (How do you figure out how robots move before building them? Indeed,
using representation theory.)

As part of categorification, instead of studying groups, rings or algebras acting on vector spaces, cate-
gorical or 2-representation theory studies the categorical actions of these. Or, more generally, actions of
(2-)categories G, such that one recovers the classical picture on the decategorified level. (Decategorifica-
tion is the reverse of categorification and turns an n-category into an (n-1)-category, e.g. a category into

a set.)
categorical action
g M) End(V) GAY
decatl Jdecat or ldecat
G M) End(V) GV

classical action

In other words, 2-representation theory assigns to each group element a functor M (g) acting on a cat-
egory V — its categorical shadow.

Problem involving Problem involving a ca-
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" Hidden structures

The categorical structure is usually richer, and the 2-representation theoretical approach can be sum-
marized by the diagram on the left. That is, starting with a group action in the wild, 2-representation
theory turns it into a question involving richer categorical structures, which then reveal hidden symme-
tries within the original formulation.

2-representation theory links diverse fields, as sketched in Equation 1. For my research the most impor-
tant incarnations of 2-representation theory are in the green boxes in the diagram in Equation 1. Starting
from the bottom and going clockwise (including the red boxes), the relevant connections are e.g. via
[M3TZ19] connecting to [EGNOis], Kazhdan-Lusztig theory [KL79], Khovanov homology [Khoo], the
Riche-Williamson program [RW18], my latest work [KST2z2], the Mazorchuk-Miemietz approach to cell
theory [MMuii1], Chern-Simons(-Witten) theory [Wi1z].



Background (continued)

2-representation theory — in general and, specifically, as in my research — is having a strong impact on
these fields because it provides richer structures and the tools to analyze them, e.g.:

1. Categorifications of Hecke algebras through Soergel bimodules and their 2-representations are of
fundamental importance in modern Lie theory [RW18] and low-dimensional topology [Kho7]. For
example, they have led to new results in the representation theory of Lie algebras [MSo8].

2. There are also remarkable connections between Soergel bimodules and their 2-representations
with modern geometry. For example, see the groundbreaking work [Wii7].

3. Pioneering ideas of Chuang-Rouquier [CRo8] and Khovanov-Lauda [KL1o] opened, on the one
hand, a new field of research, 2-representation theory of Lie algebras. On the other hand, their
ideas solved longstanding open problems, e.g. Broué’s abelian defect group conjecture.

4. It is easier to see connections to other fields. For example, while classical representation theory
appears crucially in quantum or string theory via 3d Chern-Simons theory, 2-representation the-
ory is expected to play the same role for its 4d counterpart [Wii2].

5. Questions on the de- or categorified level can be proven with more structure; the proof of the
Kazhdan-Lusztig conjecture [EW14] or that Khovanov homology detects the unknot [KM11] being
examples. The categorical structures are also usually richer, e.g. Khovanov’s link homology is
functorial [ETWe18] (the proof relies on 2-representations).

6. Several classical questions in e.g. modular representation theory are stated in terms of functors
acting on categories, which is part of what 2-representation theory studies. For example, the
Lascoux-Leclerc-Thibon conjecture was proven by using functorial action of an affine Lie algebra
on categories of representations of affine Hecke algebras [Arg6].

So 2-representations play a central role in our way as we understand actions today. One could call 2-
representation theory the representation theory of the 21th century, with expected wide-ranging
applications in mathematics and beyond. So rephrasing the first sentence of this section:

The study of 2-representations is going to be of critical importance in mathematics and related field
such as physics and chemistry. Its future significance can hardly be overestimated.

However, in some sense we are at the same stage Frobenius and Burnside were 120 years ago: we have
enough examples to see that our theory is rich and we have a satisfactory theory in specific cases, but we
are lacking a general theory and the full range of examples to utilize the full power of 2-representation
theory. The main aims of this proposal address these two obstacles in 2-representation theory: we will
develop the general theory and study interesting new examples of 2-representations.

State of the arts and outlook

Frobenius and Burnside’s theory of linear actions is at the heart of many different fields of mathematics
as well as physics and chemistry. But after its introduction two major questions needed to be tackled:
the abstract theory needed to be advanced, and new examples needed to be analyzed in detail. Both of
these were successfully addressed by the pioneers in the field, and this theory become the shining pillar
of pure mathematics, that we know it as today. Similarly, the future usefulness of 2-representations can
hardly be overestimated. The framework provided by 2-representation theory is remarkable because it
reveals deeper structures in the mathematics that, until now, we could only see shadows of.



Contribution to a significant problem

Since the field of 2-representation theory has progressed so quickly, one of the obstacles to future progress
is that the foundations of it are still poorly understood, and its position within mathematics and the sci-
ences needs to be strengthened. Thus, the two main problems in the field are to solidify the foun-
dations by developing the abstract theory, and to add new examples together with applications.
The contribution of my current research is that it addresses these problems in 2-representation theory in
a threefold way: by generalizing the abstract theory to allow infinite 2-categories and positive character-
istic, by using 2-representations of braid groups in connection with link homologies outside of type A,
which will clarify our understanding of these significantly, and by making connections to cryptography,
which should have an long term impact on cybersecurity, and machine learning. So my research will
hopefully play an important role in our future perspective on categorical actions and their applications.

Usually, researchers in my field categorify a specific module of an algebra to tackle some problem at hand.
These works are mostly example-based and a general and satisfying theory of 2-representations is still
missing. The key innovation driving my research is that, instead of studying each example in a vacuum, I
aim to categorify the whole theory itself, namely the theory “representation theory of finite-dimensional
algebras”, providing a solid foundation to further study the well-known examples within a general theory.
Advances in the abstract theory of 2-representations will have significant impact on the whole community
studying such categorifications, and with it on fields beyond the abstract theory. In fact, in my research,
the abstract theory and applications will advance in parallel, which is an entirely new way of attacking
the problems related to my research: because of its abstract incarnation, my approach will have impacts
on fields that are not normally considered within the scope of the categorification community, such as
cryptography or quantum and string physics, demonstrating the uniqueness of these ideas.

My field of research

My research is about 2-representation theory and its applications in categorification, low-dimensional
topology, cryptography, machine learning, mathematical physics and related fields. To develop the vi-
brant field of 2-representation theory, to strengthen its impact and to find novel applications is the ob-
jective of myself. More precisely, my research is focused on three aspects of 2-representation theory, all
of which are part of the research envisioned in the present application:

Categorification and z-representation theory. Ingredients. (Modular) representation theory, categorical
algebra, (higher) category theory, group and semigroup theory. My latest results. [M3Tig], [M>T18],
[M3TZ19], IM3TZ20], [MTz21], [MT22], [Tuz3], [MT23). A picture from one of my papers.
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2-module
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This picture illustrates the ladder fo categorification (stopping with a 2-category). A 2-representation
(also called 2-module) is a functor from a 2-category to a nice target 2-category, assigning a category to
each object, a functor to each arrow and a natural transformation to each 2-arrow.



My field of research (continued)

Knot homologies, topological quantum field theories, Lie theory and geometry. Ingredients. Low-
dimensional topology, representation theory, quantum Lie theory, quantum or string physics, homo-
logical algebra. My latest results. [RT19], [TV21], [LT21] (honestly speaking, this paper is my students
work, and part of their PhD thesis). A picture is worth a thousand words.
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This picture from my paper [RT19] illustrates an algebraic presentation of a braid in a handlebody, and its
closure. We use this presentation in [RT19] to construct an associated link homology; the main ingredient
being Soergel bimodules.

Representation theory of algebras, monoids and semigroups, especially, their diagrammatic presentations
and properties such as cellularity. Ingredients. Monoidal categories, diagram categories, combinatorics.
My latest results. [TWi9], [TW2o0], [TV21], [STWZ21], [KST22], [LTV22a], [Tuzz], [LTV22b], [LTV22c],
[COT23], [BT23], [LTV23). A picture is worth a thousand words.
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This picture (stolen from [KST22]) shows the various monoids that we study from the viewpoint of the
sizes of their representations, and whether they are potentially suitable for cryptographical applications
because they only have big representations.



Details for Aspect (A)

The analog of simple modules in 2-representation theory are simple transitive z2-representations, and a
question of fundamental importance is to ask for a classification of these. One of the crucial new and
exciting developments in the field was the observation that the classification of simple transitive 2-
representations, in many cases, can be reduced to the study of fusion categories, while still being the
richer structure as finitary 2-representation theory is non-semisimple, non-abelian. The first observa-
tion in this direction was made in [MT16], and this is made rigorous in [M3T19] using quantum Satake
and (co)algebra 1-morphisms.

In recent work, which will be available soon and which is based on [M3T219], we solved the classifica-
tion problem of simple transitive 2-representations of Soergel bimodules (non-semisimple, non-abelian)
for finite Weyl groups in characteristic o by solving the analog classification question for certain fusion
categories (semisimple). The case of characteristic p is still widely open, thus:

Problem. Study the 2-representation theory of Soergel bimodules and related 2-categories in char-
acteristic p. Explore the connections to fusion categories with an eye on applications.

Subprogram 1. A main focus of this aspect is to develop machinery to study 2-representations of Soergel
bimodules similarly to [M3TZ19), but in characteristic p. We have precise ideas how to attack this in
type A, using the technology of H-reduction [M3TZ20]. The other types need work as the cell theory in
finite characteristic is very different from characteristic o. To this end, new ideas and approaches will be
needed, replacing or adapting the H-reduction, and will have impact beyond the theory.

Parts will be done quickly, but some parts are hard and will take time.

Subprogram 2. The fusion categories arising from exceptional Coxeter groups are exotic examples of
such categories — not fitting in the general philosophy that almost all fusion categories are of the form
Vect(G), Rep(G) or Rep®*(Uy(g)). Usually these exceptional examples tell a lot about the the general
theory, and having more of them is desirable. A source of these potential examples is the application of
the arguments from [M3TZ19] and [M3T18] where we expect several such examples to turn up.

This is expected to be a fruitful direction, with results in the near future.

Subprogram 3. In the dihedral case the fusion categories obtained from Soergel bimodules are modular,
which means they give rise to 3-manifold invariants by the Witten—Reshetikhin-Turaev approach and
its siblings. As they arise as the semisimple part of the bigger, non-semisimple 2-category of Soergel
bimodules, we expect Soergel bimodules to give richer invariants. These will be related to invariants
studied under the slogan of modified traces, cf. [GPMTog], and will reveal structures in topology.

For the dihedral case I expect results quickly; in general this will be hard.



Details for Aspect (B)

Homology theories are ubiquitous in modern mathematics, ranging from singular homology of topolog-
ical spaces to knot homologies. These homological invariants take values in, say, isomorphism classes
of vector spaces instead of in numbers as e.g. Betti numbers do. One main point is that these homology
theories usually extend to functors and provide information about how certain structures are related. In
his pioneering work, Khovanov introduced what is nowadays called Khovanov homology [Khoo] - his
celebrated categorification of the Jones polynomial — which is a homological invariant of links. Studying
link homologies has become a big industry after Khovanov’s breakthrough, and many link homologies
are known by now, coming from and connecting various fields, from mathematics to physics. The most
important example of such homologies is the categorification of the HOMFLYPT polynomial [Kho7],
called HOMFLYPT homology.

Almost all variants of Khovanov’s invariant stay in type A, meaning for us that they are related to the
classical braid group. For example, Khovanov’s construction of triply-graded homology uses Soergel bi-
modules of type A. Thus, an exciting problem is:

Problem. Construct link homologies and categorical braid group actions outside of type A by using
2-representation theory.

Subprogram 1. A main motivation for me is to generalize these HOMFLYPT invariants to different braid
groups. A first step is [RT19], defining a HOMFLYPT invariant for links in handlebodies using type A
Soergel bimodules, which is functorial on handlebody braids — a fact which I can only prove using 2-
representations. Considering other types of Soergel bimodules and topology, as in e.g. [TV21], is my aim.
These homologies will turn out to be very interesting.

This is an exciting direction, and I expect to have new results appearing soon.

Subprogram 2. An ingredient in the construction of triply-graded homology is the Rouquier complex,
cf. [Kho7], which categorifies the representation of braid groups on Hecke algebras. The categorification
has more structure: using cell 2-representations one can show that the Rouquier complex gives a faithful
braid group action, see e.g. [Je17], while this is still open for the algebras. 2-representations will allow me
to extend these ideas to affine braid groups.

Answering these questions using 2-representations is a goal for the long-run.



Details for Aspect (C)

In current joint work with M. Khovanov and M. Sitaraman we start to develop monoidal-category-based
cryptography. Monoid-based protocols often admit efficient attacks based on linear algebra [MRis5], that
is, on the existence of a non-trivial representation of moderate dimension. Turns out that varying the field
can best be encoded using integral representations, which need to be of large dimension to resist linear
attacks. To find suitable monoids we propose to look at monoidal categories since their endomorphism
spaces provide examples of monoids. The biggest obstacle to overcome is that current literature on
monoidal categories, e.g. [EGNO15], mostly studies linear categories. Such categories are not immediately
useful for cryptography, and we rather look for set-theoretic counterparts of categories that appear in
quantum topology, mathematical physics, and TQFTs. The most striking examples are Temperley-Lieb
monoids and (variations of) Soergel bimodules. It turns out that large integral representations of the
corresponding monoids are crucial to resist linear attacks, and such representation naturally appear as
shadows of 2-representations.

Thus, we propose a new application of diagrammatic methods in cryptography. Specifically:

Problem. Apply integral and 2-representations of Temperley-Lieb-like categories and Soergel bi-
modules to cryptography.

Subprogram 1. The first step is to look at the Temperley-Lieb monoid and various diagrammatic monoids
along the same lines, see e.g. [H]20] for a candidate list. This has the advantage of being set-theoretical
without extra works. Making the integral and 2-representations set-theoretical will be one of the crucial
steps for diagram monoids to enter cybersecurity. Maybe this will be of importance in the future.

Obtaining first results will happen quickly; the general picture is a mammoth task.

Subprogram 2. From the numerical data I collected, Soergel bimodules seem to give very promising
examples of monoids useful for cryptography. However, the literature on Soergel bimodules their 2-
representations is linear, see e.g. [EW14], [M?TZ19]. It is important to figure out how these can be inter-
preted set-theoretical, and this is what this aspect will focus on. This is an important questions on its
own and I will delve into it.

This is a task of paramount importance, and will be attacked soon.



Details for Aspect (C) (continued)

In upcoming joint work with G. Williamson and partially with J. Gibson we study the relevance of rep-
resentation theory in machine learning. In a nutshell, representation theory is about linear maps, while
machine learning (for the most part) uses piecewise linear maps. The goal of this project is to merge the
two fields by allowing piecewise linear maps in representation theory and then apply this “new” repre-
sentation theory to machine learning.

Things change quite drastically. For example, one can get nontrivial equivariant piecewise linear maps
between different simple representations. As an explicit example, take the cyclic group of order four.
Over R one finds three different simple representations, the trivial and the sign representation, as well
as a two dimensional rotation representation.

The following are nontrivial equivariant piecewise linear maps from the rotation representation to the
other two: Let f: R? — R be the map f(z,y) = |sgn(x)x + sgn(y)y|, where sgn is the sign of a real
number. Plotting this map in R? or as a contour (that is, using level sets) in R? gives

A very similar, and in some sense a signed version of f, is g: R> — R given by

Details will follows soon.
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