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Pioneers of representation theory

Let G be a finite group.

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the useful?

study of linear group actions:

M : G −→ End(V),

with V being some C-vector space. We call V a module or a representation.

The “atoms” of such an action are called simple.

Maschke ∼1899. All modules are built out of simples (“Jordan-Hölder”).

“M(g) = a matrix in End(V)”

Distant future goal: We want to have a
categorical version of this!

“M(a) = a matrix in End(V)”

Main future goal: We want to have a
categorical version of this.

I am going to explain what we can do at present.
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Some basic theorems in classical representation theory

B All G -modules are built out of simples.

B The character of a simple G -module determines it.

B There is a one-to-one correspondence

|{simple G -modules}/iso|
1:1←→

|{conjugacy classes in G}|.

B All simples can be constructed intrinsically using the regular G -module.

The character only remembers the
traces of the acting matrices.

“Regular representation
= G acting on itself.”

Goal: Find categorical versions of these facts.
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Finite Coxeter groups

A family of groups with interesting representation theory are the finite Coxeter groups .

These have two different interesting representations:
B Frobenius & many others ∼1895++. The simples.
B Kazhdan–Lusztig ∼1979++. The cell representations.

These are always integral.

These are usually not integral.

The case for n odd works similar.

The definition of the
cells is a bit involved,

using Kazhdan–Lusztig combinatorics.
I skip it for today.

The cells partition the
Coxeter group in question.
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Categorification: A picture to keep in mind

2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

“categorify”

“categorify”

“categorify”

forms

forms

forms

“categorifies”

“categorifies”

An algebra A can be viewed as an one-object category C,
and a representation as a functor from C
into the one-object category End(V), i.e.

M : C −→ End(V).

I only show you “the weak story” today, but we actually
study the so-called strong version. Roughly, Coxeter groups

can be categorified using Soergel bimodules,
and studying their 2-representation theory fixes the higher structure.

Sn

[·]⊕
��

full-grown 2-action
// E nd(V)

[·]⊕
��

Wn
classical action

//

categorical action

55

End(V)

Mazorchuk–Miemietz ∼2014.
Notion of a “2-atom” called simple transitive:

an appropriate 2-analog of simple modules.

What one can hope for:

Problem involving
a group action

G X

Problem involving
a categorical
group action

“Decomposition of
the problem

into 2-atoms”

“lift”

“new
insights”

Example(Khovanov–Seidel & others 2000++).
Faithfulness of “categorical representations” of braid groups –

this is a huge open problem in the classical case.
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“Lifting” classical representation theory

B All G -modules are built out of simples.

B The character of a simple G -module determines it.

B There is a one-to-one correspondence

|{simple G -modules}/iso.|
1:1←→

|{conjugacy classes in G}|.

B All simples can be constructed intrinsically using the regular G -module.

Note that we have a very particular notion
what a “suitable” 2-representation is.

What characters were for Frobenius
are these matrices for us.

There are some technicalities
and this is not quite true.

These turned out to be very interesting
since their importance is only visible via categorification.
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Basic philosophy: Work with matrices long as possible!

Classifying “higher” representations of Coxeter groups:

1 list of candidates

2 reduce the list

3 construct the remaining ones

give

Mazorchuk–Miemietz ∼2010. There are so-called cell 2-representations CL.
These work for any Coxeter group and categorify the cell representations of
Kazhdan–Lusztig. All cells can be categorified.

Everything depends on the choice
of generators and relations.

Steps 1 and 2

only deal with matrices.

Step 3

needs “higher treatment”.

The best we have for the construction in general is
Mackaay–Mazorchuk–Miemietz–T.’s (co)algebra approach.
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State of the arts

Classification results are rare at the moment. But:
B Mazorchuk–Miemietz ∼2014. There is a classification in Coxeter type A.
B Several authors including myself ∼2016. There is a classification in

dihedral Coxeter type.

For the symmetric groups the uncategorified
and the categorified story are completely parallel.

But this is misleading and purely a type A phenomenon.

For the dihedral groups the uncategorified
and the categorified story are very different.

Most of them are
not “categorifyable”.

More on the next slide.

This is very new
and has not shown up
in categorification yet.
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Towards 1 , 2 and 3

Assume one has a category V and a “categorical action m : C[Wn]→ E nd(V)”.
Then there is a graph Gm together with a two-coloring associated to m, called the
principal graph of m.

Several authors including myself ∼2016. A V and a 2-atom m can only exist if
Gm is of ADE Dynkin type. Hereby, the Coxeter number of Gm is n − 2.

Thus, it is easy to write down the list of all candidates.

Mackaay–T., Mackaay–Mazorchuk–Miemietz–T. ∼2016. We can also
construct all of these and say whether these are equivalent, which completes the
(graded) classification.

Hence, for fixed n, there are only up to six 2-atoms.
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Concluding remarks—let me dream a bit

B Everything works graded as well, i.e. for Hecke algebras instead of Coxeter
groups. In particular, with a bit more care, it works for braid groups.

B The dihedral story is just the tip of the iceberg. We hope that the general
theory has impact beyond the dihedral case, e.g. for “generalized Coxeter–Dynkin diagrams”

à la Zuber via Elias’ quantum Satake.

B There are various connections:

I To the theory of subfactors, fusion categories etc. à la
Etingof–Gelaki–Nikshych–Ostrik,...

I To quantum groups at roots of unity and their “subgroups” à la
Etingof–Khovanov, Ocneanu, Kirillov–Ostrik,...

I To web calculi à la Kuperberg, Cautis–Kamnitzer–Morrison,...

B More?
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ∼1928++. Representation theory is the useful? study of algebra
actions:

M : A −→ End(V),

with V being some C-vector space. We call V a module or a representation.

The “atoms” of such an action are called simple.

Noether, Schreier ∼1928. All modules are built out of simples
(“Jordan-Hölder”).

“M(g) = a matrix in End(V)”

Distant future goal: We want to have a
categorical version of this!

“M(a) = a matrix in End(V)”

Main future goal: We want to have a
categorical version of this.

I am going to explain what we can do at present.

Daniel Tubbenhauer The origin of representation theory April 2017 3 / 12

Some basic theorems in classical representation theory

B All G -modules are built out of simples.

B The character of a simple G -module determines it.

B There is a one-to-one correspondence

|{simple G -modules}/iso|
1:1←→

|{conjugacy classes in G}|.

B All simples can be constructed intrinsically using the regular G -module.

The character only remembers the
traces of the acting matrices.

“Regular representation
= G acting on itself.”

Goal: Find categorical versions of these facts.

Daniel Tubbenhauer Some classical results April 2017 4 / 12

Finite Coxeter groups

A family of groups with interesting representation theory are the finite Coxeter groups .

These have two different interesting representations:
B Frobenius & many others ∼1895++. The simples.
B Kazhdan–Lusztig ∼1979++. The cell representations.

Example. In case of the dihedral group Wn the (right) cells are either
one-dimensional or n−1-dimensional:

• •

•

•

•

••

••

1

t

s

st

ts
tst

sts

w0

These are always integral.

These are usually not integral.

The case for n odd works similar.

The definition of the
cells is a bit involved,

using Kazhdan–Lusztig combinatorics.
I skip it for today.

The cells partition the
Coxeter group in question.
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Categorification: A picture to keep in mind

2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

“categorify”

“categorify”

“categorify”

forms

forms

forms

“categorifies”

“categorifies”

Classical representation theory “lives” here

“Higher” representation theory should “live” here

An algebra A can be viewed as an one-object category C,
and a representation as a functor from C
into the one-object category End(V), i.e.

M : C −→ End(V).

I only show you “the weak story” today, but we actually
study the so-called strong version. Roughly, Coxeter groups

can be categorified using Soergel bimodules,
and studying their 2-representation theory fixes the higher structure.

Sn

[·]⊕
��

full-grown 2-action
// E nd(V)

[·]⊕
��

Wn
classical action

//

categorical action

55

End(V)

Mazorchuk–Miemietz ∼2014.
Notion of a “2-atom” called simple transitive:

an appropriate 2-analog of simple modules.

What one can hope for:

Problem involving
a group action

G X

Problem involving
a categorical
group action

“Decomposition of
the problem

into 2-atoms”

“lift”

“new
insights”

Example(Khovanov–Seidel & others 2000++).
Faithfulness of “categorical representations” of braid groups –

this is a huge open problem in the classical case.
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“Lifting” classical representation theory

B Mazorchuk–Miemietz ∼2014. All (suitable) 2-representations are built out
of 2-atoms.

B Mazorchuk–Miemietz ∼2014. “2-atoms are determined by the
decategorified actions (a.k.a. matrices) of the M(F)’s”.

B Mackaay–Mazorchuk–Miemietz–T. ∼2016. There is a one-to-one
correspondence

|{2-atoms of C }/equi.|
1:1←→

|{certain (co)algebra 1-morphisms}/“2-Morita equi.”|.

B Mazorchuk–Miemietz ∼2014. There exists principal 2-representations
lifting the regular representation of Coxeter groups.
Several authors including myself ∼2016. But even in well-behaved cases
there are 2-atoms which do not arise in this way.

Note that we have a very particular notion
what a “suitable” 2-representation is.

What characters were for Frobenius
are these matrices for us.

There are some technicalities
and this is not quite true.

These turned out to be very interesting
since their importance is only visible via categorification.
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State of the arts

Classification results are rare at the moment. But:
B Mazorchuk–Miemietz ∼2014. There is a classification in Coxeter type A.
B Several authors including myself ∼2016. There is a classification in

dihedral Coxeter type.

Type A Type I2(n)

All simples are
“categorifyable”

All cells are
“categorifyable”

All 2-atoms are
2-cells

“Uniqueness” of
2-atoms

For the symmetric groups the uncategorified
and the categorified story are completely parallel.

But this is misleading and purely a type A phenomenon.

For the dihedral groups the uncategorified
and the categorified story are very different.

Most of them are
not “categorifyable”.

More on the next slide.

This is very new
and has not shown up
in categorification yet.
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The type A family
n = 2•

•

n = 3

• •
n = 4• • •

• • •

n = 5

• • • •
n = 6• • • • •

• • • • •
. . .

The type D family
n = 6

• •
•
•

• •
•
•

n = 8

• • •
•
•

• • •
•
•

n = 10

• • • •
•
•

• • • •
•
•

n = 12

• • • • •
•
•

• • • • •
•
•

. . .

The type E exceptions
n = 12

• • • • •
•

• • • • •
•

n = 18

• • • • • •
•

• • • • • •
•

n = 30

• • • • • • •
•

• • • • • • •
•

Back

The 2-atoms of type DE are completely new.
Even their decategorifications are:

They were “overlooked” by Kazhdan–Lusztig and others
and give new insights into the dihedral group.

2-cells.

Not 2-cells.

Not 2-cells.

There is still much to do...

Thanks for your attention!
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of 2-atoms.

B Mazorchuk–Miemietz ∼2014. “2-atoms are determined by the
decategorified actions (a.k.a. matrices) of the M(F)’s”.

B Mackaay–Mazorchuk–Miemietz–T. ∼2016. There is a one-to-one
correspondence

|{2-atoms of C }/equi.|
1:1←→

|{certain (co)algebra 1-morphisms}/“2-Morita equi.”|.

B Mazorchuk–Miemietz ∼2014. There exists principal 2-representations
lifting the regular representation of Coxeter groups.
Several authors including myself ∼2016. But even in well-behaved cases
there are 2-atoms which do not arise in this way.

Note that we have a very particular notion
what a “suitable” 2-representation is.

What characters were for Frobenius
are these matrices for us.

There are some technicalities
and this is not quite true.

These turned out to be very interesting
since their importance is only visible via categorification.
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State of the arts

Classification results are rare at the moment. But:
B Mazorchuk–Miemietz ∼2014. There is a classification in Coxeter type A.
B Several authors including myself ∼2016. There is a classification in

dihedral Coxeter type.

Type A Type I2(n)

All simples are
“categorifyable”

All cells are
“categorifyable”

All 2-atoms are
2-cells

“Uniqueness” of
2-atoms

For the symmetric groups the uncategorified
and the categorified story are completely parallel.

But this is misleading and purely a type A phenomenon.

For the dihedral groups the uncategorified
and the categorified story are very different.

Most of them are
not “categorifyable”.

More on the next slide.

This is very new
and has not shown up
in categorification yet.
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The type A family
n = 2•

•

n = 3

• •
n = 4• • •

• • •

n = 5

• • • •
n = 6• • • • •

• • • • •
. . .

The type D family
n = 6

• •
•
•

• •
•
•

n = 8

• • •
•
•

• • •
•
•

n = 10

• • • •
•
•

• • • •
•
•

n = 12

• • • • •
•
•

• • • • •
•
•

. . .

The type E exceptions
n = 12

• • • • •
•

• • • • •
•

n = 18

• • • • • •
•

• • • • • •
•

n = 30

• • • • • • •
•

• • • • • • •
•

Back

The 2-atoms of type DE are completely new.
Even their decategorifications are:

They were “overlooked” by Kazhdan–Lusztig and others
and give new insights into the dihedral group.

2-cells.

Not 2-cells.

Not 2-cells.

There is still much to do...

Thanks for your attention!
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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Frobenius’ “character theory of the regular representation”, e.g.:

A(G = Z/3Z) =

X0 X1 X2

0 X0 X1 X2

1 X1 X2 X0

2 X2 X0 X1

Θ(G ) = det(A(G )) =

(X0 + X1 + X2)(X0 + ζX1 + ζ2X2)(X0 + ζ2X1 + ζX2).

The same decomposition into linear factors happens for all finite abelian groups.

Frobenius generalized this to arbitrary finite groups.

Nowadays we would say that each factor of Θ(G ) corresponds to a simple
G -module with dimension=degree. All simple characters arise in this way.

Back

ζ = exp(2πi/3)

Using a more modern notation,
Θ(G) =

∏
simples M det(

∑
g∈GXgM(g)))︸ ︷︷ ︸
irr. factors

.

Representation theory of finite abelian groups is “boring”:
All simples are one-dimensional.

(Similarly in the categorical setup later on.)

First simple. Second simple. Third simple.
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Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups. The type I2(n)
family are the dihedral groups .

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Back

https://en.wikipedia.org/wiki/Coxeter_group


The dihedral groups are of Coxeter type I2(n):

Wn = 〈s, t|s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g.: W4 = 〈s, t|s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular n-gons, e.g. for n = 4 the
Coxeter complex is:

• •

•

•

•

••

••

1
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Quantum invariants of links: Jones & many others ∼1984++.

p(L) polynomial , L ∼= L′ ⇒ p(L) = p(L′).

“Higher” quantum invariants of links: Khovanov & many others ∼1999++.

JLK bigraded vector space , L ∼= L′ ⇒ JLK ∼= JL′K , JLK graded Euler−−−−−−−→
characteristic

p(L).

Back

Works for tangles as well,
fitting into the

2-categorical setup.

“Jones : Khovanov
!

Betti numbers : Homology”

The main point about “higher” quantum invariants is that they provide functors:

{
link embeddings in R3

link cobordisms in R3 × [0, 1] modulo isotopy

}
−→

{
bigraded vector spaces

homogeneous linear maps

}

which turned out to be very useful in e.g. 4-dimensional topology.

L′ ∈ R3

L ∈ R3

link
cobordism

functoriality7−−−−−−→
JL′K

JLK

linear
map

To prove functoriality in general is very hard.
In joint work with Ehrig–Wedrich ∼2017 we proved the functoriality of Khovanov–Rozansky’s invariants.

(This was conjectured from the start, but seemed infeasible to prove.)

One of our main ingredients? “Higher” representation theory.
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Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)”, Ocneanu ∼2000.)
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