From dualities to diagrams

Or: the diagrammatic presentation machine

Daniel Tubbenhauer

Joint work with David Rose, Pedro Vaz and Paul Wedrich

May 2015

Daniel Tubbenhauer May 2015

- 1 Exterior \mathfrak{gl}_N -web categories
 - Graphical calculus via Temperley-Lieb diagrams
 - Its cousins: the N-webs
 - Proof? Skew quantum Howe duality!
- 2 Symmetric \mathfrak{gl}_2 -web categories
 - More cousins: the green 2-webs
 - Proof? Symmetric quantum Howe duality!
- 3 Exterior-symmetric \mathfrak{gl}_N -web categories
 - Even more cousins: the green-red N-webs
 - Proof? Super quantum Howe duality!
 - Super-Super duality and even more cousins

Daniel Tubbenhauer May 2015 2

The 2-web space

Definition(Rumer-Teller-Weyl 1932)

The 2-web space $\operatorname{Hom}_{2\mathbf{Web}_g}(b,t)$ is the free $\mathbb{C}_q = \mathbb{C}(q)$ -vector space generated by non-intersecting arc diagrams with b,t bottom/top boundary points modulo:

• The circle removal:

$$1 \bigcirc = -q - q^{-1} = -[2]$$

• The isotopy relations:

The 2-web category

Definition(Kuperberg 1995)

The 2-web category 2-**Web** $_{\rm g}$ is the (braided) monoidal, \mathbb{C}_q -linear category with:

- Objects are vectors $\vec{k} = (1, ..., 1)$ and morphisms are $\mathrm{Hom}_{2\mathbf{Web}_{\mathrm{g}}}(\vec{k}, \vec{l})$.
- Composition o:

$$\bigcap_{1 \ \ 1} \circ \bigcup^1 = \bigcap_1 \quad , \quad \bigcup^1 \circ \bigcap_1 = \bigcup_1$$

■ Tensoring ⊗:

$$\bigcap_{1}^{1} \otimes \bigcap_{1}^{1} = \bigcap_{1}^{1} \bigcap_{1}^{1}$$

If you do not like quantum groups: q = 1 is fine for today

Recall that \mathfrak{gl}_2 is generated by

$$E=\begin{pmatrix}0&1\\0&0\end{pmatrix}\quad,\quad F=\begin{pmatrix}0&0\\1&0\end{pmatrix}\quad,\quad H_1=\begin{pmatrix}1&0\\0&0\end{pmatrix}\quad,\quad H_2=\begin{pmatrix}0&0\\0&1\end{pmatrix}\quad,$$

The elements of $\mathbf{U}(\mathfrak{gl}_2)$ are polynomials in $E,F,H_1,H_2,H=H_1-H_2$ modulo

$$EF - FE = H$$
, $HE = EH + 2E$, $HF = FH + 2F$.

The elements of $\mathbf{U}_q(\mathfrak{gl}_2)$ are polynomials in $E,F,L_{1,2}^{\pm 1},K=L_1L_2^{-1}$ modulo

$$EF - FE = \frac{K - K^{-1}}{q - q^{-1}}, \ KE = q^2 EK, \ KF = q^{-2} FK.$$

Roughly: $K = q^H$ and $\lim_{q \to 1} \mathbf{U}_q(\mathfrak{gl}_2) = \mathbf{U}(\mathfrak{gl}_2)$.

Diagrams for intertwiners

Observe that there are (up to scalars) unique $\mathbf{U}_q(\mathfrak{gl}_2)$ -intertwiners

$$\operatorname{cap} \colon \mathbb{C}_q^2 \otimes \mathbb{C}_q^2 \to \mathbb{C}_q \quad \text{and} \quad \operatorname{cup} \colon \mathbb{C}_q \to \mathbb{C}_q^2 \otimes \mathbb{C}_q^2,$$

projecting $\mathbb{C}_q^2\otimes\mathbb{C}_q^2$ onto \mathbb{C}_q respectively embedding \mathbb{C}_q into $\mathbb{C}_q^2\otimes\mathbb{C}_q^2$.

Let \mathfrak{gl}_2 - \mathbf{Mod}_e be the (braided) monoidal, \mathbb{C}_q -linear category whose objects are tensor generated by \mathbb{C}_q^2 . Define a functor $\Gamma\colon 2\text{-}\mathbf{Web}_g \to \mathfrak{gl}_2\text{-}\mathbf{Mod}_e$:

- On objects: $\vec{k}=(1,\ldots,1)$ is send to $(\mathbb{C}_q^2)^{\otimes k}=\mathbb{C}_q^2\otimes\cdots\otimes\mathbb{C}_q^2$.
- On morphisms:

$$\bigcap_{n \to \infty} \mapsto \operatorname{cap} \quad , \quad \bigcup_{n \to \infty} \mapsto \operatorname{cup}$$

Theorem(Folklore)

 $\Gamma \colon 2\text{-Web}_g^{\oplus} \to \mathfrak{gl}_2\text{-Mod}_e$ is an equivalence of (braided) monoidal categories.

The main step beyond \mathfrak{gl}_2 : trivalent vertices

An N-web is an oriented, labeled, trivalent graph locally made of

$$\mathbf{m}_{k,l}^{k+l} = \bigwedge_{k=l}^{k+l} \quad , \quad \mathbf{s}_{k+l}^{k,l} = \bigvee_{k+l}^{k-l} \quad k,l,k+l \in \mathbb{N}$$

(and no pivotal things today).

Example

May 2015

Let us try the same for \mathfrak{gl}_N : the *N*-web space

Define the (braided) monoidal, \mathbb{C}_q -linear category N-**Web**_g by using:

Definition(Cautis-Kamnitzer-Morrison 2012)

The *N*-web space $\operatorname{Hom}_{N\text{-Web}_g}(\vec{k}, \vec{l})$ is the free \mathbb{C}_q -vector space generated by *N*-webs with \vec{k} and \vec{l} at the bottom and top modulo isotopies and:

"gl_m ladder" relations like

$$k-1 + 1 + 1 - k+1 + 1 = [k-I]$$

• The exterior relations:

$$k = 0$$
 , if $k > N$

Diagrams for intertwiners - Part 2

Observe that there are (up to scalars) unique $\mathbf{U}_q(\mathfrak{gl}_N)$ -intertwiners

$$\mathbf{m}_{k,l}^{k+l} \colon \bigwedge_q^k \mathbb{C}_q^N \otimes \bigwedge_q^l \mathbb{C}_q^N \to \bigwedge_q^{k+l} \mathbb{C}_q^N \quad \text{and} \quad \mathbf{s}_{k+l}^{k,l} \colon \bigwedge_q^{k+l} \mathbb{C}_q^N \to \bigwedge_q^k \mathbb{C}_q^N \otimes \bigwedge_q^l \mathbb{C}_q^N$$

given by projection and inclusion again.

Let \mathfrak{gl}_N - \mathbf{Mod}_e be the (braided) monoidal, \mathbb{C}_q -linear category whose objects are tensor generated by $\bigwedge_a^k \mathbb{C}_a^N$. Define a functor $\Gamma \colon N$ - $\mathbf{Web}_g \to \mathfrak{gl}_N$ - \mathbf{Mod}_e :

- On objects: $\vec{k} = (k_1, \dots, k_m)$ is send to $\bigwedge_q^{k_1} \mathbb{C}_q^N \otimes \dots \otimes \bigwedge_q^{k_m} \mathbb{C}_q^N$.
- On morphisms:

$$\bigwedge_{k=1}^{k+l} \mapsto \mathbf{m}_{k,l}^{k+l} \quad , \qquad \bigwedge_{k+l}^{k} \mapsto \mathbf{s}_{k+l}^{k,l}$$

Theorem(Cautis-Kamnitzer-Morrison 2012)

 $\Gamma \colon \textit{N-Web}^{\oplus}_{g} \to \mathfrak{gl}_{\textit{N}}\text{-Mod}_{e} \text{ is an equivalence of (braided) monoidal categories}.$

"Howe" to prove this?

Howe: the commuting actions of $\mathbf{U}_q(\mathfrak{gl}_m)$ and $\mathbf{U}_q(\mathfrak{gl}_N)$ on

$$\bigwedge_{q}^{K} (\mathbb{C}_{q}^{m} \otimes \mathbb{C}_{q}^{N}) \cong \bigoplus_{k_{1} + \dots + k_{m} = K} (\bigwedge_{q}^{k_{1}} \mathbb{C}_{q}^{N} \otimes \dots \otimes \bigwedge_{q}^{k_{m}} \mathbb{C}_{q}^{N})$$

$$\cong \bigoplus_{k_{1} + \dots + k_{N} = K} (\bigwedge_{q}^{k_{1}} \mathbb{C}_{q}^{m} \otimes \dots \otimes \bigwedge_{q}^{k_{N}} \mathbb{C}_{q}^{m})$$

introduce an $\mathbf{U}_q(\mathfrak{gl}_m)$ -action f on the first term with \vec{k} -weight space $\wedge_q^{\vec{k}}\mathbb{C}_q^N$.

In particular, there is a functorial action

$$\Phi^m_{\mathrm{skew}} \colon \dot{\mathbf{U}}_q(\mathfrak{gl}_m) \to \mathfrak{gl}_{N}\text{-}\mathbf{Mod}_e,$$

$$\vec{k} \mapsto \bigwedge_q^{\vec{k}} \mathbb{C}_q^N, \quad X \in 1_{\vec{l}} \mathbf{U}_q(\mathfrak{gl}_m) 1_{\vec{k}} \mapsto f(X) \in \mathrm{Hom}_{\mathfrak{gl}_N\text{-}\mathbf{Mod}_e} (\bigwedge_q^{\vec{k}} \mathbb{C}_q^N, \bigwedge_q^{\vec{l}} \mathbb{C}_q^N).$$

Howe: Φ^m_{skew} is full. Or in words: all relations in \mathfrak{gl}_{N} - \mathbf{Mod}_{e} follow from the ones in $\dot{\mathbf{U}}_{q}(\mathfrak{gl}_{m})$ and the ones in the kernel of Φ^m_{skew} .

Define the diagrams to make this work

Theorem(Cautis-Kamnitzer-Morrison 2012)

Define N-Webg such there is a commutative diagram

with

 Υ^m induces the " \mathfrak{gl}_m ladder" relations, $\ker(\Upsilon^m)$ gives the exterior relations.

Exempli gratia

The " \mathfrak{gl}_m ladder" relation

$$k-1 + 1 + 1 - k+1 + 1 = [k-l]$$

is just

$$\mathsf{EF1}_{\vec{k}} - \mathsf{FE1}_{\vec{k}} = [k - l]1_{\vec{k}}.$$

The exterior relations are a diagrammatic version of

$${\textstyle \bigwedge_q^{>N}}\mathbb{C}_q^N\cong 0.$$

The symmetric story is easier in some sense...

An 2-web is a labeled, trivalent graph locally made of

$$\operatorname{cap}_k = \bigcap_{k = k} , \quad \operatorname{cup}_k = \bigvee^{k = l} , \quad \operatorname{m}_{k,l}^{k+l} = \bigvee^{k+l} , \quad \operatorname{s}_{k+l}^{k,l} = \bigvee^{k}$$

Up to sign issues that I ignore today!

Example

Never change a winning team

Define the (braided) monoidal, \mathbb{C}_q -linear category 2-**Web**_r by using:

Definition

Given $\vec{k} \in \mathbb{Z}^n_{\geq 0}$ and $\vec{l} \in \mathbb{Z}^{n'}_{\geq 0}$. The 2-web space $\operatorname{Hom}_{2\mathbf{Web}_r}(\vec{k}, \vec{l})$ is the free \mathbb{C}_q -vector space generated by 2-webs between \vec{k} and \vec{l} modulo isotopies and:

- The " \mathfrak{gl}_n ladder" relations again!
- A circle evaluation and the dumbbell relation:

• But no(!) relation of the form

$$_{k}=0$$
 , if $k>N$.

Diagrams for intertwiners - Part 3

Observe that there are (up to scalars) unique $\mathbf{U}_q(\mathfrak{gl}_2)$ -intertwiners

$$\begin{array}{ll} \operatorname{cap}_k\colon \operatorname{Sym}_q^k\mathbb{C}_q^2\otimes \operatorname{Sym}_q^k\mathbb{C}_q^2\to \mathbb{C}_q &, & \operatorname{m}_{k,l}^{k+l}\colon \operatorname{Sym}_q^k\mathbb{C}_q^2\otimes \operatorname{Sym}_q^l\mathbb{C}_q^2\to \operatorname{Sym}_q^{k+l}\mathbb{C}_q^2\\ \operatorname{cup}_k\colon \mathbb{C}_q\to \operatorname{Sym}_q^k\mathbb{C}_q^2\otimes \operatorname{Sym}_q^k\mathbb{C}_q^2 &, & \operatorname{s}_{k+l}^{k,l}\colon \operatorname{Sym}_q^{k+l}\mathbb{C}_q^2\to \operatorname{Sym}_q^k\mathbb{C}_q^2\otimes \operatorname{Sym}_q^l\mathbb{C}_q^2\\ \text{(guess where they come from...)} \end{array}$$

Let \mathfrak{gl}_2 -Mod_s be the (braided) monoidal, \mathbb{C}_q -linear category whose objects are tensor generated by $\operatorname{Sym}_q^k\mathbb{C}_q^N$. Define a functor $\Gamma\colon 2\text{-Web}_{\mathbf{r}}\to \mathfrak{gl}_2\text{-Mod}_s$:

- On objects: $\vec{k} = (k_1, \dots, k_n)$ is send to $\operatorname{Sym}_q^{k_1} \mathbb{C}_q^2 \otimes \dots \otimes \operatorname{Sym}_q^{k_n} \mathbb{C}_q^2$.
- On morphisms:

$$\bigcap_{k = k} \mapsto \operatorname{cap}_k \quad , \quad \bigvee^k \mapsto \operatorname{cup}_k \quad , \quad \bigwedge^{k+l} \mapsto \operatorname{m}_{k,l}^{k+l} \quad , \quad \bigvee^k \mapsto \operatorname{s}_{k+l}^{k,l}$$

Theorem

 $\Gamma \colon 2\text{-Web}_{\mathrm{r}}^{\oplus} o \mathfrak{gl}_2\text{-Mod}_s$ is an equivalence of (braided) monoidal categories.

"Howe" to prove this?

Howe: the commuting actions of $\mathbf{U}_q(\mathfrak{gl}_n)$ and $\mathbf{U}_q(\mathfrak{gl}_N)$ on

$$\operatorname{Sym}_q^K(\mathbb{C}_q^n \otimes \mathbb{C}_q^N) \cong \bigoplus_{k_1 + \dots + k_n = K} (\operatorname{Sym}_q^{k_1} \mathbb{C}_q^N \otimes \dots \otimes \operatorname{Sym}_q^{k_n} \mathbb{C}_q^N)$$
$$\cong \bigoplus_{k_1 + \dots + k_N = K} (\operatorname{Sym}_q^{k_1} \mathbb{C}_q^n \otimes \dots \otimes \operatorname{Sym}_q^{k_n} \mathbb{C}_q^n)$$

introduce an $\mathbf{U}_q(\mathfrak{gl}_n)$ -action f on the first term with \vec{k} -weight space $\mathrm{Sym}_q^{\vec{k}}\mathbb{C}_q^N$.

In particular, there is a functorial action

$$\begin{split} \Phi^n_{\mathrm{sym}} \colon \dot{\mathbf{U}}_q(\mathfrak{gl}_n) &\to \mathfrak{gl}_2\text{-}\mathbf{Mod}_s, \\ \vec{k} &\mapsto \mathrm{Sym}_q^{\vec{k}}\mathbb{C}_q^2, \quad X \in 1_{\vec{l}}\mathbf{U}_q(\mathfrak{gl}_n)1_{\vec{k}} \mapsto f(X) \in \mathrm{Hom}_{\mathfrak{gl}_2\text{-}\mathbf{Mod}_s}(\mathrm{Sym}_q^{\vec{k}}\mathbb{C}_q^2, \mathrm{Sym}_q^{\vec{l}}\mathbb{C}_q^2). \end{split}$$

Howe: Φ^n_{sym} is full. Or in words: all relations in \mathfrak{gl}_2 -**Mod**_s follow from the ones in $\dot{\mathbf{U}}_q(\mathfrak{gl}_n)$ and the ones in the kernel of Φ^n_{sym} .

Copy-paste

Theorem

Define $2\text{-Web}_{\mathrm{r}}$ such that there is a commutative diagram

with

$$\Upsilon^n(F_i1_{\vec{k}}) \mapsto \bigvee_{k=1}^{k-1} \bigvee_{j=1}^{j+1} , \quad \Upsilon^n(E_i1_{\vec{k}}) \mapsto \bigvee_{k=1}^{k+1} \bigvee_{j=1}^{j-1} \bigvee_{j=1}^{j} \bigvee_{j=1}^{k+1} \bigvee_{j=1}^{j-1} \bigvee_{j=1}^{k+1} \bigvee_{j=1}^{j-1} \bigvee_{j=1}^{k+1} \bigvee_{j=1}^{k-1} \bigvee_{j=1}^{k+1} \bigvee_{j=1}^{k-1} \bigvee_{j=1}^{k+1} \bigvee_{j=1}^{k-1} \bigvee_{j=1}^{k+1} \bigvee_{j=1}^{k-1} \bigvee_$$

 Υ^n induces the " \mathfrak{gl}_n ladder" relations, $\ker(\Upsilon^n)$ gives the circle/dumbbell relation.

Exempli gratia

The dumbbell relation

$$[2] \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

is a diagrammatic version of

$$\mathbb{C}_q^2\otimes\mathbb{C}_q^2\cong\mathbb{C}_q\oplus\mathrm{Sym}_q^2\mathbb{C}_q^2.$$

No relations of the form

$$k = 0$$
 , if $k > N$,

because

$$\mathrm{Sym}_q^{>N}\mathbb{C}_q^N\not\cong 0.$$

Could there be a pattern?

An green-red N-web is a colored, labeled, trivalent graph locally made of

$$\mathbf{m}_{k,l}^{k+l} = \underbrace{\uparrow}_{k}^{k+l}$$
, $\mathbf{m}_{k,l}^{k+l} = \underbrace{\uparrow}_{k}^{k+l}$, $\mathbf{m}_{k,1}^{k+l} = \underbrace{\uparrow}_{k}^{k+1}$, $\mathbf{m}_{k,1}^{k+l} = \underbrace{\uparrow}_{k}^{k+1}$

And of course splits and some mirrors as well!

Example

The green-red N-web category

Define the (braided) monoidal, \mathbb{C}_q -linear category N-**Web**_{gr} by using:

Definition

Given $\vec{k} \in \mathbb{Z}_{\geq 0}^{m+n}, \vec{l} \in \mathbb{Z}_{\geq 0}^{m'+n'}$. The green-red *N-web space* $\operatorname{Hom}_{N\text{-Web}_{\mathrm{gr}}}(\vec{k}, \vec{l})$ is the free \mathbb{C}_q -vector space generated by *N*-webs between \vec{k} and \vec{l} modulo isotopies and:

- The " $\mathfrak{gl}_m + \mathfrak{gl}_n$ ladder" relations.
- The dumbbell relation:

$$[2] \left. \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right| = \left. \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right| + \left. \begin{array}{c} 1 \\ 2 \\ 1 \end{array} \right|$$

• The exterior relations:

$$k = 0$$
 , if $k > N$.

Diagrams for intertwiners - Part 4

Observe that there are (up to scalars) unique $\mathbf{U}_q(\mathfrak{sl}_N)$ -intertwiners

$$\mathbf{m}_{k,1}^{k+1} \colon \bigwedge_q^k \mathbb{C}_q^N \otimes \mathbb{C}_q^N \to \bigwedge_q^{k+1} \mathbb{C}_q^N \quad \text{and} \quad \mathbf{m}_{k,1}^{k+1} \colon \mathrm{Sym}_q^k \mathbb{C}_q^N \otimes \mathbb{C}_q^N \to \mathrm{Sym}_q^{k+1} \mathbb{C}_q^N$$
 plus others as before.

Let \mathfrak{gl}_N - $\mathbf{Mod}_{\mathrm{es}}$ be the (braided) monoidal, \mathbb{C}_q -linear category whose objects are tensor generated by $\bigwedge_q^k \mathbb{C}_q^N$, $\mathrm{Sym}_q^k \mathbb{C}_q^N$. Define a functor $\Gamma \colon N$ - $\mathbf{Web}_{\mathrm{gr}} \to \mathfrak{gl}_N$ - $\mathbf{Mod}_{\mathrm{es}}$:

- On objects: $\vec{k}=(k_1,\ldots,k_{m+n})$ is send to $\bigwedge_q^{k_1}\mathbb{C}_q^N\otimes\cdots\otimes\operatorname{Sym}_q^{k_{m+n}}\mathbb{C}_q^N$.
- On morphisms:

Theorem

 $\Gamma \colon \textit{N-Web}_{\mathrm{gr}}^{\oplus} \to \mathfrak{gl}_\textit{N}\text{-Mod}_{\mathrm{es}} \text{ is an equivalence of (braided) monoidal categories}.$

Super $\mathfrak{gl}(m|n)$

Definition

The quantum general linear superalgebra $\mathbf{U}_q(\mathfrak{gl}(m|n))$ is generated by $L_i^{\pm 1}$ and F_i, E_i subject the some relations, most notably, the super relations:

$$F_m^2 = 0 = E_m^2 \quad , \quad \frac{L_m L_{m+1}^{-1} - L_m^{-1} L_{m+1}}{q - q^{-1}} = F_m E_m + E_m F_m,$$

$$[2] F_m F_{m+1} F_{m-1} F_m = F_m F_{m+1} F_m F_{m-1} + F_{m-1} F_m F_{m+1} F_m + F_{m+1} F_m F_{m-1} F_m + F_m F_{m-1} F_m F_{m+1} F_m F_{m+1} \text{ (plus an E version)}.$$

There is a Howe pair $(\mathbf{U}_q(\mathfrak{gl}(m|n)), \mathbf{U}_q(\mathfrak{gl}_N))$ with $\vec{k} = (k_1, \dots, k_{m+n})$ -weight space under the $\mathbf{U}_q(\mathfrak{gl}(m|n))$ -action on $\bigwedge_q^K(\mathbb{C}_q^{m|n}\otimes\mathbb{C}_q^N)$ given by

$$\textstyle \bigwedge_q^{k_1}\mathbb{C}_q^N\otimes\cdots \bigwedge_q^{k_m}\mathbb{C}_q^N\otimes \operatorname{Sym}_q^{k_{m+1}}\mathbb{C}_q^N\otimes\cdots\otimes \operatorname{Sym}_q^{k_{m+n}}\mathbb{C}_q^N.$$

Define the diagrams to make this work

Theorem

Define $\textit{N-Web}_{\mathrm{gr}}$ such there is a commutative diagram

with

$$\Upsilon^{m|n}_{\mathrm{su}}(F_m 1_{\vec{k}}) \mapsto \bigvee_{k_m}^{k_{m-1}} \bigvee_{k_{m+1}}^{k_{m+1}+1} , \quad \Upsilon^{m|n}_{\mathrm{su}}(E_m 1_{\vec{k}}) \mapsto \bigvee_{k_m}^{k_{m+1}} \bigvee_{k_{m+1}}^{k_{m+1}-1}$$

 $\Upsilon^{m|n}_{\mathrm{su}}$ induces the " $\mathfrak{gl}(m|n)$ ladder" relations, $\ker(\Upsilon^{m|n}_{\mathrm{su}})$ gives the exterior relations.

Exempli gratia

The dumbbell relation is the super commutator relation:

All other super relations are consequences!

Another meal for our machine

Howe: the commuting actions of $\mathbf{U}_q(\mathfrak{gl}(m|n))$ and $\mathbf{U}_q(\mathfrak{gl}(N|M))$ on

$$\begin{split} \bigwedge_q^K (\mathbb{C}_q^{m|n} \otimes \mathbb{C}_q^{N|M}) &\cong \bigoplus_{k_1 + \dots + k_n = K} (\bigwedge_q^{\vec{k}_0} \mathbb{C}_q^{N|M} \otimes \operatorname{Sym}_q^{\vec{k}_1} \mathbb{C}_q^{N|M}) \\ &\cong \bigoplus_{l_1 + \dots + l_N = K} (\bigwedge_q^{\vec{l}_0} \mathbb{C}_q^{m|n} \otimes \operatorname{Sym}_q^{\vec{l}_1} \mathbb{C}_q^{m|n}) \end{split}$$

introduce an $\mathbf{U}_q(\mathfrak{gl}(m|n))$ -action f with \vec{k} -weight space $\bigwedge_q^{\vec{k}_0}\mathbb{C}_q^{N|M}\otimes \operatorname{Sym}_q^{\vec{k}_1}\mathbb{C}_q^{N|M}$.

In particular, there is a functorial action

$$\begin{split} &\Phi_{\mathrm{susu}}^{m|n} \colon \dot{\mathbf{U}}_q(\mathfrak{gl}(m|n)) \to \mathfrak{gl}(N|M)\text{-}\mathbf{Mod}_{\mathrm{es}}, \\ &\vec{k} \mapsto \bigwedge_q^{\vec{k}_0} \mathbb{C}_q^{N|M} \otimes \mathrm{Sym}_q^{\vec{k}_1} \mathbb{C}_q^{N|M}, \quad \text{etc.}. \end{split}$$

Howe: $\Phi_{\mathrm{susu}}^{m|n}$ is full. Or in words: all relations in $\mathfrak{gl}(N|M)$ -Mod_{es} follow from the ones in $\dot{\mathbf{U}}_q(\mathfrak{gl}(m|n))$ and the ones in the kernel of $\Phi_{\mathrm{susu}}^{m|n}$.

The definition of the diagrams is already determined

Theorem

Define N|M-**Web**_{gr} such there is a commutative diagram

with

$$\Upsilon^{m|n}_{\mathrm{susu}}(F_m 1_{\vec{k}}) \mapsto \bigvee_{k_m}^{k_{m-1}} \bigvee_{k_{m+1}}^{k_{m+1}+1} , \quad \Upsilon^{m|n}_{\mathrm{susu}}(E_m 1_{\vec{k}}) \mapsto \bigvee_{k_m}^{k_{m+1}} \bigvee_{k_{m+1}}^{k_{m+1}-1}$$

 $\Upsilon^{m|n}_{\mathrm{susu}}$ induces " $\mathfrak{gl}(m|n)$ ladder" relations, $\ker(\Upsilon^{m|n}_{\mathrm{susu}})$ gives a "not-a-hook" relation.

The machine spits this out

The (braided) monoidal, \mathbb{C}_q -linear category N|M-**Web**_{gr} by using:

Definition

Given $\vec{k} \in \mathbb{Z}_{\geq 0}^{m+n}$ and $\vec{l} \in \mathbb{Z}_{\geq 0}^{m'+n'}$. The N|M-web space $\operatorname{Hom}_{N|M\text{-Web}_{\mathrm{gr}}}(\vec{k},\vec{l})$ is the free \mathbb{C}_q -vector space generated by N|M-webs between \vec{k},\vec{l} modulo isotopies and:

- The " $\mathfrak{gl}_m + \mathfrak{gl}_n$ ladder" relations.
- The dumbbell relation:

$$[2] \downarrow \qquad \downarrow = 2 \qquad + 2 \qquad \downarrow$$

• The *not-a-hook relations* (given by killing an idempotent corresponding to a box-shaped Young diagram).

Some concluding remarks

- Taking $N, M \to \infty$, one obtains a diagrammatic presentation ∞ -**Web**gr of some form of the Hecke algebroid. Roughly: the machine spits it out, if you feed it with Schur-Weyl duality.
- ullet $\infty ext{-Web}_{
 m gr}$ is completely symmetric in green-red which allows us to prove a symmetry of HOMFLY-PT polynomials

$$\mathcal{P}^{a,q}(\mathcal{L}(\vec{\lambda})) = (-1)^{co} \mathcal{P}^{a,q^{-1}}(\mathcal{L}(\vec{\lambda}^{\mathrm{T}})).$$

diagrammatically.

- Homework: feed the machine with you favorite duality (e.g. Howe dualities in other types) and see what it spits out.
- Everything is amenable to categorification!

There is still much to do...

Thanks for your attention!