Representation theory of monoids and monoidal categories

Or: Cells and actions

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

Where are we?

► Green, Clifford, Munn, Ponizovskii ~1940+++ many others Representation theory of (finite) monoids

Goal Find some categorical analog

Where are we?

► Green, Clifford, Munn, Ponizovskiĩ ~1940+++ many others Representation theory of (finite) monoids

Goal Find some categorical analog

Where are we?

► Green, Clifford, Munn, Ponizovskiĩ ~1940+++ many others Representation theory of (finite) monoids

Goal Find some categorical analog

► Green, Clifford, Munn, Ponizovskii ~1940+++ many others Representation theory of (finite) monoids

Goal Find some categorical analog

Representation theory of monoids and monoidal categories

The theory of monoids (Green \sim 1950++)

- Associativity \Rightarrow reasonable theory of matrix reps
- Southeast corner \Rightarrow reasonable theory of matrix reps

- ► Associativity ⇒ reasonable theory of matrix reps
- Southeast corner \Rightarrow reasonable theory of matrix reps

The

Adjoining identities is "free" and there is no essential difference between semigroups and monoids, or inverses semigroups and groups The main difference is semigroups/monoids *vs.* inverses semigroups/groups

Today I will stick with the more familiar monoids and groups

In a monoid information is destroyed

The point of monoid theory is to keep track of information loss

The

Adjoining identities is "free" and there is no essential difference between semigroups and monoids, or inverses semigroups and groups

The main difference is semigroups/monoids vs. inverses semigroups/groups

Today I will stick with the more familiar monoids and groups

In a monoid information is destroyed

The point of monoid theory is to keep track of information loss

	Monoids ap	pear	naturall	y in c	ategori	fication					
	Group-like structures										
		Totalityα	Associativity	Identity	Invertibility	Commutativity					
	Semigroupoid	Unneeded	Required	Unneeded	Unneeded	Unneeded					
	Small category	Unneeded	Required	Required	Unneeded	Unneeded					
	Groupoid	Unneeded	Required	Required	Required	Unneeded					
	Magma	Required	Unneeded	Unneeded	Unneeded	Unneeded					
	Quasigroup	Required	Unneeded	Unneeded	Required	Unneeded					
	Unital magma	Required	Unneeded	Required	Unneeded	Unneeded					
	Semigroup	Required	Required	Unneeded	Unneeded	Unneeded					
	Loop	Required	Unneeded	Required	Required	Unneeded					
	Inverse semigroup	Required	Required	Unneeded	Required	Unneeded					
	Monoid	Required	Required	Required	Unneeded	Unneeded					
Associativity =	Commutative monoid	Required	Required	Required	Unneeded	Required					
,	Group	Required	Required	Required	Required	Unneeded					
Southeast corr	Abelian group	Required	Required	Required	Required	Required					

The theory of monoids (Green \sim 1950++)

• Associativity \Rightarrow reasonable theory of matrix reps

• Southeast corner \Rightarrow reasonable theory of matrix reps

Representation theory of monoids and monoidal categories

Cells and actions

The cell orders and equivalences:

$$x \leq_{L} y \Leftrightarrow \exists z : y = zx,$$

$$x \leq_{R} y \Leftrightarrow \exists z' : y = xz',$$

$$x \leq_{LR} y \Leftrightarrow \exists z, z' : y = zxz',$$

$$x \sim_{L} y \Leftrightarrow (x \leq_{L} y) \land (y \leq_{L} x),$$

$$x \sim_{R} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{R} x),$$

$$x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x).$$

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

The theory of monoids (Green \sim 1950++)

H-cells = intersections of left and right cells

Slogan Cells partition monoids into matrix-type-pieces

Representation theory of monoids and monoidal categories

Cells and actions

The theory of monoids (Green \sim 1950++)

▶ Each \mathcal{H} contains no or 1 idempotent *e*; every *e* is contained in some $\mathcal{H}(e)$

• Each $\mathcal{H}(e)$ is a maximal subgroup No internal information loss

Each H contains no or 1 idempotent e; every e is contained in some H(e)
 Each H(e) is a maximal subgroup No internal information loss

Cells and actions

Each H contains no or 1 idempotent e; every e is contained in some H(e)
 Each H(e) is a maximal subgroup No internal information loss

Cells and actions

Each \mathcal{H} contains no or 1 idempotent e; every e is contained in some $\mathcal{H}(e)$

▶ Each $\mathcal{H}(e)$ is a maximal subgroup No internal information loss

Representation theory of monoids and monoidal categories

The theory of monoids (Green \sim 1950++)

 $\phi \colon S \to \operatorname{GL}(V)$ S-representation on a \mathbb{K} -vector space V, S is some monoid

- ▶ A \mathbb{K} -linear subspace $W \subset V$ is S-invariant if $S \cdot W \subset W$ Substructure
- ▶ $V \neq 0$ is called simple if 0, V are the only S-invariant subspaces Elements
- ► Careful with different names in the literature: *S*-invariant ↔ subrepresentation, simple ↔ irreducible
- ► A crucial goal of representation theory

Find the periodic table of simple S-representations

Group Period	→ 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18				
i	1 H																	2 He	S₂	(1)	(12)	(123)
Z	å	4 Be											B	ĉ	Ň	ő	9F	10 Ne		• •	• •	. ,
з	11 Na	12 Mg											13 AJ	14 Si	15 P	16 S	17	18 Ar	V	1	1	1
4	19 K	20 Ca	21 Sc	22 Ti	₹3	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	Atriv	-	-	-
5	¥2	38 Sr	39	40 Zr	41 Nb	42 Mo	43 fc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 T	54 Xe		-	-	-
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn	Xsgn	1	-1	1
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sq	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og				
		,	57 La	58 Če	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb			Xstand	2	0	-1
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No						

 $\phi \colon S \to \operatorname{GL}(V)$ S-representation on a \mathbb{K} -vector space V, S is some monoid

▶ A K-linear subspace $W \subset V$ is S-invariant if $S \cdot W \subset W$ Substructure

	Chemistry	Group theory	Rep theory				
►	Matter	Groups	Reps				
	Elements	Simple groups	Simple reps				
	Simpler substances	Jordan–Hölder theorem	Jordan–Hölder theorem				
	Periodic table	Classification of simple groups	Classification of simple reps				

► A crucial goal of representation theory

Find the periodic table of simple *S*-representations

						~			~	~								4.77					
Feriod 1	⇒1 1 H	2	3	4		5	ь	/	8	9	10	11	12	13	14	15	16	17	2 He	S3	(1)	(12)	(123)
2	3 Li	4 Be												SB	ĉ	7, N	80	9 F	10 Ne	- 5			
3	11 Na	12 Mg												13 AJ	14 Si	15 P	16 S		18 Ar	Vento	1	1	1
4	19 K	20 Ča	21 Sc	2	2	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	Atriv	-	-	-
5	37 Rb	38 Sr	39 Y	4 Z	0 r	11	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe		-	-	-
6	55 Cs	56 Ba	* 71 Lu	7. H	2	73 Fa	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn	Xsgn	T	-1	T
7	87 Fr	88 Ra	* 10: * Lr	3 10 R	14 1 f [05 0b	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg		113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og				
			* 57 La	S	8	9 r	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb			Xstand	2	0	-1
			* 89 * Ac	9 T		Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No						

 $\phi \colon S o \operatorname{GL}(V)$ S-representation on a \mathbb{K} -vector space V, S is some monoid

▶ A K-linear subspace $W \subset V$ is S-invariant if $S \cdot W \subset W$ Substructure

Chemistry	Group theory	Rep theory			
Matter	Groups	Reps			
Elements	Simple groups	Simple reps			
Simpler substances	Jordan–Hölder theorem	Jordan–Hölder theorem			
Periodic table	Classification of simple groups	Classification of simple reps			

A crucial goal of representation theory

Frobenius ~1895++ and others

For groups and $\mathbb{K} = \mathbb{C}$ this theory is really satisfying Pns

 $\phi \colon S o \operatorname{GL}(V)$ S-representation on a \mathbb{K} -vector space V, S is some monoid

▶ A K-linear subspace $W \subset V$ is S-invariant if $S \cdot W \subset W$ Substructure

Chemistry	Group theory	Rep theory			
Matter	Groups	Reps			
Elements	Simple groups	Simple reps			
Simpler substances	Jordan–Hölder theorem	Jordan–Hölder theorem			
Periodic table	Classification of simple groups	Classification of simple reps			

A crucial goal of representation theory

Frobenius ~ 1895 ++ and others

For groups and $\mathbb{K} = \mathbb{C}$ this theory is really satisfying Pns

Clifford, Munn, Ponizovskii \sim **1940**++ *H*-reduction There is a one-to-one correspondence

$$\left\{ \begin{array}{c} \mathsf{simples with} \\ \mathsf{apex } \mathcal{J}(e) \end{array} \right\} \xleftarrow{\mathsf{one-to-one}} \left\{ \begin{array}{c} \mathsf{simples of (any)} \\ \mathcal{H}(e) \subset \mathcal{J}(e) \end{array} \right\}$$

Reps of monoids are controlled by their maximal subgroups

- ▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it Apex
- ▶ In other words (smod means the category of simples, take $\mathbb{K} = \overline{\mathbb{K}}$):

S-smod_{$\mathcal{J}(e)$} $\simeq \mathcal{H}(e)$ -smod

Clifford, Munn, Ponizovskii \sim 1940++ *H*-reduction There is a one-to-one correspondence

- ▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it Apex
- ▶ In other words (smod means the category of simples, take $\mathbb{K} = \overline{\mathbb{K}}$):

S-smod_{$\mathcal{J}(e)$} $\simeq \mathcal{H}(e)$ -smod

Reps of monoids are controlled by their maximal subgroups

- ▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it Apex
- ▶ In other words (smod means the category of simples, take $\mathbb{K} = \overline{\mathbb{K}}$):

S-smod_{$\mathcal{J}(e)$} $\simeq \mathcal{H}(e)$ -smod

 $S\operatorname{-smod}_{\mathcal{J}(e)} \simeq \mathcal{H}(e)\operatorname{-smod}$

Representation theory of monoids and monoidal categories

Cells and actions

Usual answer ? = monoidal cats

► I need more structure than plain monoidal cats Specific categorification!

- Let $\mathscr{C} = \mathscr{R}ep(G)$ (G a finite group)
- ▶ \mathscr{C} is monoidal and nice. For any $M, N \in \mathscr{C}$, we have $M \otimes N \in \mathscr{C}$:

$$g(m \otimes n) = gm \otimes gn$$

for all $g \in G, m \in M, n \in \mathbb{N}$. There is a trivial representation $\mathbbm{1}$

- Finitary = linear + additive + idempotent split + finitely many indecomposables + fin dim hom spaces Cat of a fin dim algebra
- ► Fiat = finitary + involution + adjunctions + monoidal
- ► Fusion = fiat + semisimple
- Reps are on finitary cats

Finitary + fiat are additive analogs of tensor cats

Tensor cats as in Etingof-Gelaki-Nikshych-Ostrik ~2015

Examples instead of formal defs

▶ Let $\mathscr{C} = \mathscr{R} ep(G)$ (G a finite group)

▶ \mathscr{C} is monoidal and nice. For any $M, N \in \mathscr{C}$, we have $M \otimes N \in \mathscr{C}$:

$$g(m \otimes n) = gm \otimes gn$$

for all $g \in G, m \in M, n \in \mathbb{N}$. There is a trivial representation $\mathbbm{1}$

▶ The regular cat representation $\mathscr{M}: \mathscr{C} \to \mathscr{E}nd(\mathscr{C})$:

▶ The decategorification is the regular representation

- Let $K \subset G$ be a subgroup
- ▶ $\mathcal{R}ep(K)$ is a cat representation of $\mathscr{R}ep(G)$, with action

 $\mathcal{R}es^{G}_{K} \otimes _: \mathscr{R}ep(G) \to \mathscr{E}nd(\mathcal{R}ep(K)),$

which is indeed a cat action because $\mathcal{R}es^G_K$ is a \otimes -functor

► The decategorifications are N-representations

- ▶ Let $\psi \in H^2(K, \mathbb{C}^*)$ (ground field is now \mathbb{C})
- ▶ Let $\mathcal{V}(\mathcal{K}, \psi)$ be the category of projective \mathcal{K} -modules with Schur multiplier ψ , *i.e.* vector spaces \mathbb{V} with $\rho \colon \mathcal{K} \to \mathcal{E}nd(\mathbb{V})$ such that

$$\rho(g)\rho(h) = \psi(g,h)\rho(gh), \text{ for all } g,h \in K$$

▶ Note that $\mathcal{V}(\mathcal{K}, 1) = \mathcal{R}ep(\mathcal{K})$ and

$$\otimes : \mathcal{V}(K,\phi) \boxtimes \mathcal{V}(K,\psi) \to \mathcal{V}(K,\phi\psi)$$

▶ $\mathcal{V}(K, \psi)$ is also a cat representation of $\mathscr{C} = \mathscr{R} ep(G)$:

$$\mathscr{R}\mathrm{ep}(\mathcal{G}) \boxtimes \mathcal{V}(\mathcal{K},\psi) \xrightarrow{\mathcal{R}\mathrm{es}_{\mathcal{K}}^{\mathcal{G}}\boxtimes\mathrm{Id}} \mathcal{R}\mathrm{ep}(\mathcal{K}) \boxtimes \mathcal{V}(\mathcal{K},\psi) \xrightarrow{\otimes} \mathcal{V}(\mathcal{K},\psi)$$

► The decategorifications are N-representations

1.6

►

An S module is called simple (the "elements")

if it has no S-stable ideals

We have the Jordan-Hölder theorem: every module is built from simples

Goal Find the periodic table of simples

Categorical

A & module is called simple (the "elements")

if it has no \mathscr{C} -stable monoidal ideals

We have the weak Jordan-Hölder theorem: every module is built from simples

Goal Find the periodic table of simples

plier ψ

- Let $\psi \in H^2(\mathcal{K}, \mathbb{C}^*)$ (ground field is now \mathbb{C})
- Let V(K, ψ) be the category of projective K-modules with Schur multiplier ψ, i.e. vector spaces V with ρ: K → End(V) such that

$$\mathscr{R}\mathrm{ep}(G) \boxtimes \mathcal{V}(K,\psi) \xrightarrow{\mathcal{R}\mathrm{es}_{K}^{G}\boxtimes\mathrm{Id}} \mathcal{R}\mathrm{ep}(K) \boxtimes \mathcal{V}(K,\psi) \xrightarrow{\otimes} \mathcal{V}(K,\psi)$$

▶ The decategorifications are N-representations

The cell orders and equivalences (X, Y, Z indecomposable, @ = direct summand): $X \leq_L Y \Leftrightarrow \exists Z \colon Y @ ZX$ $X \leq_R Y \Leftrightarrow \exists Z' \colon Y @ XZ'$ $X \leq_{LR} Y \Leftrightarrow \exists Z, Z' \colon Y @ ZXZ'$ $X \sim_L Y \Leftrightarrow (X \leq_L Y) \land (Y \leq_L X)$ $X \sim_R Y \Leftrightarrow (X \leq_R Y) \land (Y \leq_R X)$ $X \sim_{LR} Y \Leftrightarrow (X \leq_{LR} Y) \land (Y \leq_{LR} X)$

• *H*-cells
$$\mathscr{S}_{\mathcal{H}} = \mathsf{Add}(X \in \mathcal{H}, \mathbb{1}) \text{ mod higher terms}$$

The cell orders and equivalences (X, Y, Z indecomposable, @ = direct summand): $X \leq_L Y \Leftrightarrow \exists Z: Y @ ZX$ $X \leq_R Y \Leftrightarrow \exists Z': Y @ XZ'$ $X \leq_{LR} Y \Leftrightarrow \exists Z, Z': Y @ ZXZ'$ $X \sim_L Y \Leftrightarrow (X \leq_L Y) \land (Y \leq_L X)$ $X \sim_R Y \Leftrightarrow (X \leq_R Y) \land (Y \leq_R X)$ $X \sim_{LR} Y \Leftrightarrow (X \leq_{LR} Y) \land (Y \leq_{LR} X)$

Clifford, Munn, Ponizov Example (cells of
$$\Re ep(G, \mathbb{C})$$
)
The cell orders and equiva Only one cell since $\mathbb{1} \oplus XX^*$ e, \oplus = direct summand):
 $X \leq_L Y \Leftrightarrow \exists Z : Y \oplus ZX$
 $X \leq_R Y \Leftrightarrow \exists Z' : Y \oplus XZ'$
 $X \leq_{LR} Y \Leftrightarrow \exists Z, Z' : Y \oplus ZXZ'$
 $X \sim_L Y \Leftrightarrow (X \leq_L Y) \land (Y \leq_L X)$
 $X \sim_R Y \Leftrightarrow (X \leq_L Y) \land (Y \leq_R X)$
 $X \sim_{LR} Y \Leftrightarrow (X \leq_{LR} Y) \land (Y \leq_{LR} X)$

• *H*-cells
$$\mathscr{S}_{\mathcal{H}} = \mathsf{Add}(X \in \mathcal{H}, \mathbb{1})$$
 mod higher terms

• *H*-cells
$$\mathscr{S}_{\mathcal{H}} = \mathsf{Add}(X \in \mathcal{H}, \mathbb{1})$$
 mod higher terms

Categorical *H*-reduction

There is a one-to-one correspondence

$$\left\{ \begin{array}{c} \mathsf{simples with} \\ \mathsf{apex } \mathcal{J} \end{array} \right\} \xleftarrow{\mathsf{one-to-one}} \left\{ \begin{array}{c} \mathsf{simples of (any)} \\ \mathscr{S}_{\mathcal{H}} \subset \mathscr{S}_{\mathcal{J}} \end{array} \right\}$$

Almost verbatim as for monoids

- ▶ Each simple has a unique maximal \mathcal{J} whose $\mathscr{S}_{\mathcal{H}}$ does not kill it Apex
- ▶ In other words (smod means the category of simples):

$$\mathscr{S}\operatorname{-smod}_{\mathcal{J}(e)} \simeq \mathscr{S}_{\mathcal{H}}\operatorname{-smod}$$

 \blacktriangleright Each simple has a unique maximal ${\mathcal J}$ whose ${\mathscr S}_{{\mathcal H}}$ does not kill it Apex

▶ In other words (smod means the category of simples):

 $\mathscr{S}\operatorname{-smod}_{\mathcal{J}(e)} \simeq \mathscr{S}_{\mathcal{H}}\operatorname{-smod}$

- \blacktriangleright Each simple has a unique maximal ${\mathcal J}$ whose ${\mathscr S}_{{\mathcal H}}$ does not kill it Apex
- ▶ In other words (smod means the category of simples):

 $\mathscr{S}\operatorname{-smod}_{\mathcal{J}(e)} \simeq \mathscr{S}_{\mathcal{H}}\operatorname{-smod}$

Representation theory of monoids and monoidal categories

Cells and actions

There is still much to do...

Thanks for your attention!