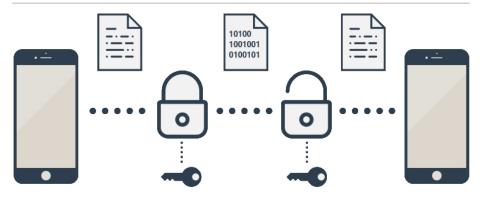
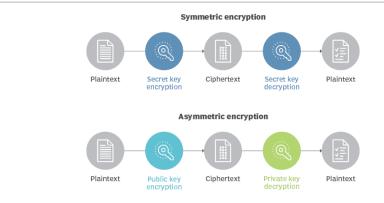

Monoidal categories, representation gap and cryptography

Or: Why I like dimensions

Daniel Tubbenhauer

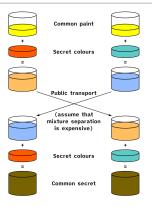


Joint with Mikhail Khovanov and Maithreya Sitaraman


March 2022

Daniel Tubbenhauer

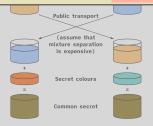
Monoidal categories, representation gap and cryptography



- E2EE Only the two communicating parties should decrypt the message
- Problem How to transfer the encryption key?
- Diffie–Hellman (DH) Addresses this problem

- · Symmetric Both parties us the same secret key
- Problem (still) How to transfer the encryption key?

Asymmetric Both parties have a public and a private key, no sharing needed


▶ DH Two secrets a, b, public g, send g^a or g^b and get (g^b)^a = g^{ab} = (g^a)^b
▶ Catch Relies on the mixtures to be hard ot decompose (discrete log problem)
▶ BTW Using colors is not practical ;-), so usually take a, b ∈ N, g ∈ (Z/pZ)^x

Colors!

The color picture makes it clear that this can easily be generalized

For example, one could take a different group

Varying the protocol and one can even allow arbitrary monoids

▶ DH Two secrets a, b, public g, send g^a or g^b and get (g^b)^a = g^{ab} = (g^a)^b
▶ Catch Relies on the mixtures to be hard ot decompose (discrete log problem)
▶ BTW Using colors is not practical ;-), so usually take a, b ∈ N, g ∈ (Z/pZ)^x

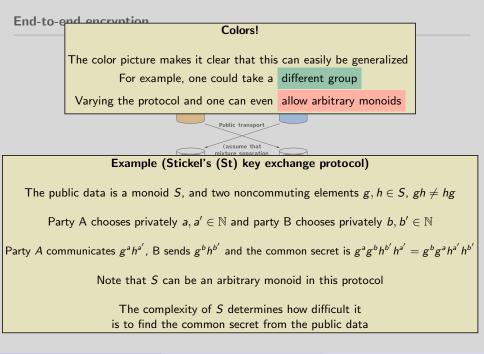
Colors!

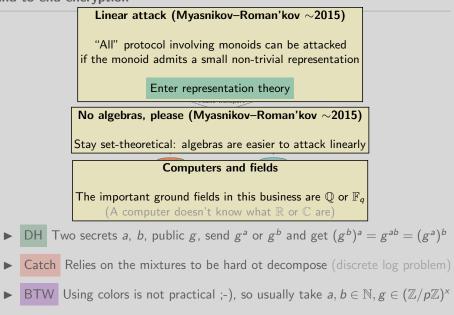
The color picture makes it clear that this can easily be generalized

For example, one could take a different group

Varying the protocol and one can even allow arbitrary monoids

Example (Shpilrain–Ushakov (SU) key exchange protocol)


The public data is a monoid S, and two sets $A, B \subset S$ of commuting elements and $g \in S$


Party A chooses privately $a, a' \in A$ and party B chooses privately $b, b' \in A$

Party A communicates aga', B sends bgb' and the common secret is abgb'a' = baga'b'

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it is to find the common secret from the public data

Linear attack (Myasnikov–Roman'kov ~2015)

"All" protocol involving monoids can be attacked if the monoid admits a small non-trivial representation

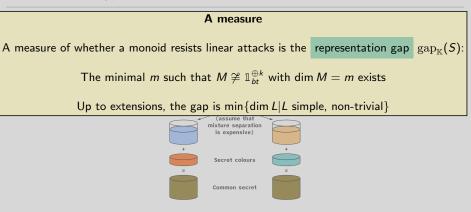
Enter representation theory

No algebras, please (Myasnikov–Roman'kov \sim 2015)

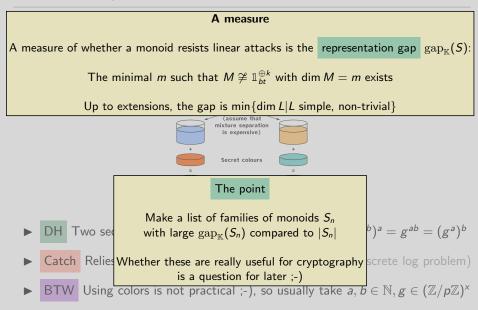
Stay set-theoretical: algebras are easier to attack linearly

Our idea

Systematically study and construct monoids with no small non-trivial representations


The abstract theory is governed by Green's theory of cells (Green's relations)

The good finite examples come from quantum topology and monoidal categories

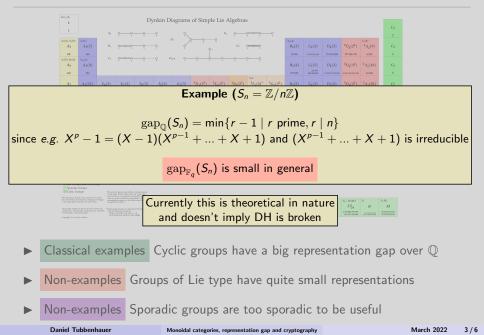

Monoidal categories provide families of examples $S_n = \operatorname{End}_C(X^{\otimes n})$

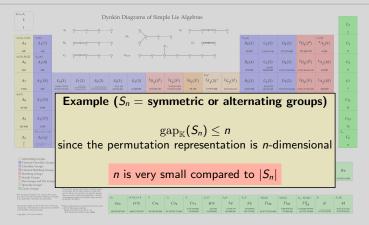
Other examples we know come from 2-representation theory and fusion categories

Daniel Tubbenhauer

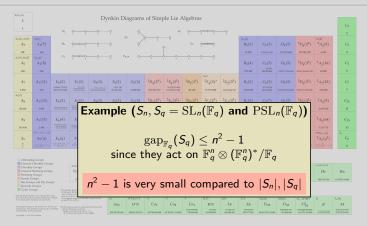
▶ DH Two secrets a, b, public g, send g^a or g^b and get (g^b)^a = g^{ab} = (g^a)^b
▶ Catch Relies on the mixtures to be hard ot decompose (discrete log problem)
▶ BTW Using colors is not practical ;-), so usually take a, b ∈ N, g ∈ (Z/pZ)^x

c, z, 1	Dynkin Diagrams of Simple Lie Algebras														C2		
1															2		
40.4.(8) As	$\frac{A_1(2)}{A_1(7)}$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0	- 2	è— i		6			$^{2}A_{0}(4)$ $B_{2}(3)$	C1(3)	D ₄ (2)	${}^{2}D_{A}(2^{2})$	⁶ ₂ (1)' ² A ₂ (9)	C.
40	168		, , ,	,	Ŷ	Ŷ		ř.		, , ,		25828	(3(3)	171 182.400	197 006 720	688	3
(9), 8,(2)'	10.0Y	с.	<u> </u>		o r.				- <u></u>	ç—		25548		171152.000	157 409 7.20	0113	
A_6	$A_{1}(8)$											$B_{2}(4)$	$C_{3}(5)$	$D_4(3)$	$^{2}D_{4}(3^{2})$	${}^{2}A_{2}(16)$	C5
340	594											979 230	225 561	4112 179354430	30 391 %i8 x 79 330	62400	5
A7	$A_1(11)$	$E_{6}(2)$	E7(2)	$E_{8}(2)$	$F_{4}(2)$	G ₂ (3)	$^{3}D_{4}(2^{3})$	${}^{2}E_{6}(2^{2})$	${}^{2}B_{2}(2^{3})$	$\frac{185^{\circ}}{2}F_{4}(2)'$	$^{2}G_{2}(3^{3})$	$B_{3}(2)$	C4(3)	$D_{5}(2)$	$^{2}D_{5}(2^{2})$	2A2(25)	с,
2.529	660	234 843 375 533 865 575 270 400	200300	10101010	3311135 605366400	4 245 696	211 341 312	75-552-879-583 776-553-959-298	29 120	17 971 200	10413-444-612	1451528	83 794 796 854 885 580	25409295965308	25 8 25 375 536 400	128.080	7
(2) A8	A ₁ (13)	$E_6(3)$	$E_{7}(3)$	$E_8(3)$	$F_{4}(3)$	$G_{2}(4)$	$^{3}D_{4}(3^{3})$	${}^{2}E_{6}(3^{2})$	${}^{2}B_{2}(2^{5})$	${}^{2}F_{4}(2^{3})$	${}^{2}G_{2}(3^{5})$	$B_{2}(5)$	C3(7)	$D_{4}(5)$	$^{2}D_{4}(4^{2})$	$^{2}A_{3}(9)$	cr
20 168	1092		NY CONTRACTOR	63163123	9734 430 792 936 471 844 761 600	251 595 900	30360872366192	10020076	32 537 680	264 903 302 699 598 176 614 499	69 829 687 409 548 593	4680308	272-007-218 684-933-680	8 923 329 800 886 886 880	87336-011 2916-0400	3 265 920	- 11
A9	A ₁ (17)	$E_{6}(4)$	E ₇ (4)	$E_{8}(4)$	F4(4)	$G_{2}(5)$	³ D ₄ (4 ³)	${}^{2}E_{6}(4^{2})$	${}^{2}B_{2}(2^{7})$	${}^{2}F_{4}(2^{5})$	2G2(37)	$B_{2}(7)$	C3(9)	D5(3)	² D ₄ (5 ²)	${}^{2}A_{2}(64)$	c_{12}
151 440	2445 PSturiot.Scolet	REPORTS REPORTS TRANSPORTS	000000000	111102201	19409-923 123 HEF HEF 076 297 WH 120-901	5899000000	642790400	Table (Colds)	34 893 383 680	and the second	312.349332482	135297680 Ona1010au10	479384.000	941 389 139 200	000-300-308	\$515776	13
A_{μ}	$A_{\mu}(q)$	$E_6(q)$	$E_7(q)$	$E_8(q)$	$F_4(q)$	$G_2(q)$	$^{3}D_{4}(q^{3})$	${}^{2}E_{4}(q^{2})$	³ B ₂ (2 ³⁺⁺¹)	${}^{3}F_{4}(2^{2n+1})$	${}^{3}G_{1}(3^{2n+1})$	$B_{\mu}(q)$	$C_{\pi}(q)$	$D_{\pi}^{+}(q)$ $D_{\pi}(q)$	${}^{O_{5}(q)}_{2}D_{0}(q^{2})$	$PSU_{n+\gamma}(q)$ $^{2}A_{\pi}(q^{2})$	z, Cp
4	and the second	10.00	and so the		100202	Ar-14-0	011513	Total a	A2100-0	Sec.	00000	dealer-s	afabe-	settie-	Station -		
Chevalley Classical ?	Thevalley Group Geoups Sainberg Group		Atemates* Symbol		M11	M12	M22	M23	M24	105.100 h	11) J2	нім Із	Ja	ня	McL	клансота Не	Ru
Steinberg Groups Standd Groups			Onder®		7900	95.040	443 520	18280368	244 823 040	175 560	604.800	50 232 590	A&TTR #TT 04A 077 562 580	44.352.080	898 123 000	4 636 367 380	145 55 144 88
Sporadle Gro Cyclic Gro	saps	Titra	dc groups and families,	derse seter													
is the group $M_{s}(M)$ is not a group of Lie type, it is the index 3 commutative adapting of $M_{s}(M)$, the spectra of the index is measured, the spectra of the index is measured in the spectra of the spectra of the index is measured in the spectra of the spectra of the index is measured in the spectra of the index is measured in the spectra of the spectra				\$z	0'N\$,0-5	-3	-2	4	I _b .D	L45	I_3, E	M(23)	M(33)	E.M(N)	F2	I_3, H_1	
to process starting on the woord terr are the cher			Suz	O'N	Co ₃	Co ₂	$C\sigma_1$	HN	Ly	Th	Fi22	Fi23	Fi'_{24}	В	М		
and proops. The specialic month's proop is unsertained with the si- is the families of burnle' arrows. A fact up			following compliance and Golds for q with a > 2. Au[2] and Au[4] or other 2010.		448 545 497 MM	440815305909	213 744 434 800	43 343 433 333 666	4 107 776 806 543 360 800	213.630 \$12.000.000	50 760 174 004 000 000	90763963 887872000	64 563 753 854 and	4 899 C0 C3 20 884 880	1 289 289 709 290 843 723 293 800		

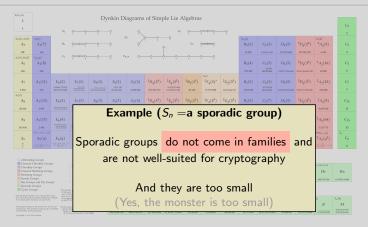

Classical examples Cyclic groups have a big representation gap over $\mathbb Q$


► Non-examples Groups of Lie type have quite small representations

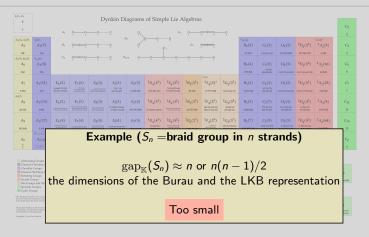
Non-examples Sporadic groups are too sporadic to be useful


Daniel Tubbenhauer

Monoidal categories, representation gap and cryptography

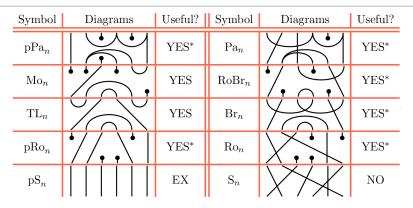


Classical examples Cyclic groups have a big representation gap over Q
 Non-examples Groups of Lie type have quite small representations
 Non-examples Sporadic groups are too sporadic to be useful
 Daniel Tubbenhauer Monoidal categories, representation gap and cryptography March 202



Classical examples Cyclic groups have a big representation gap over Q
 Non-examples Groups of Lie type have quite small representations
 Non-examples Sporadic groups are too sporadic to be useful
 Daniel Tubbenhauer Moneidal categories, representation gap and cryptography March 202

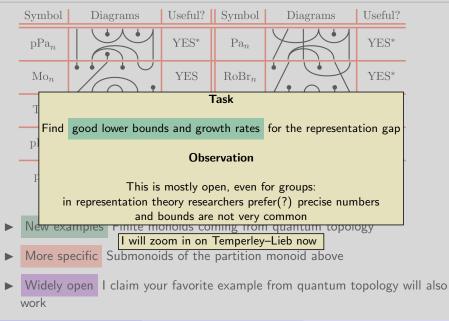
Classical examples Cyclic groups have a big representation gap over Q
 Non-examples Groups of Lie type have quite small representations
 Non-examples Sporadic groups are too sporadic to be useful
 Daniel Tubbenhauer Monoidal categories, representation gap and cryptography March 2022

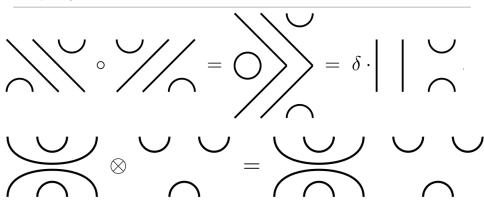


- Classical examples Cyclic groups have a big representation gap over Q
- Non-examples Groups of Lie type have quite small representations

Non-examples Sporadic groups are too sporadic to be useful

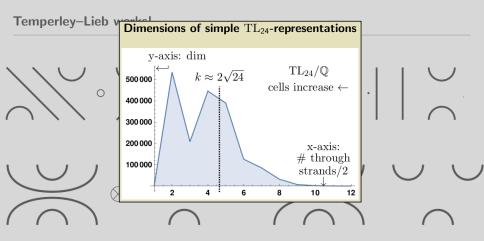
Daniel Tubbenhauer


Monoidal categories, representation gap and cryptography

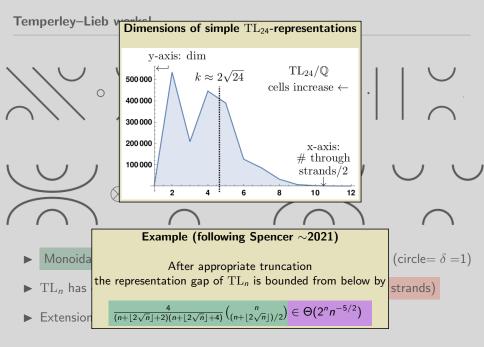


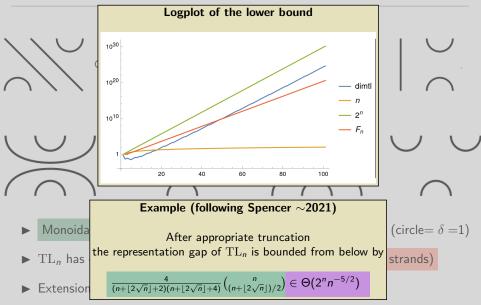
New examples Finite monoids coming from quantum topology

• More specific Submonoids of the partition monoid above


 Widely open I claim your favorite example from quantum topology will also work

Monoidal category example The Temperley–Lieb monoid TL_n (circle= δ =1)

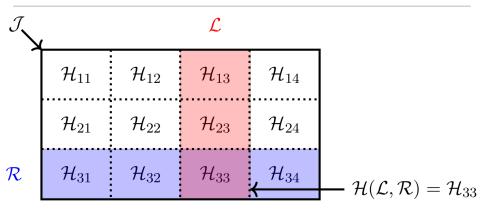

- ▶ TL_n has one simple L_k per $k \in \{n, n-2, ..., 1 \text{ or } 0\}$ (through strands)
- Extensions $\mathbb{1}_{bt} \to M \to \mathbb{1}_{bt}$ are all trivial


Monoidal category example The Temperley–Lieb monoid TL_n (circle= δ =1)

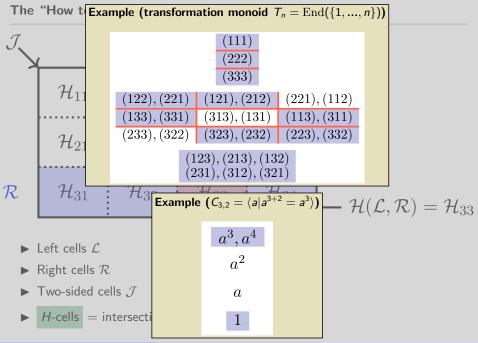
▶ TL_n has one simple L_k per $k \in \{n, n-2, ..., 1 \text{ or } 0\}$ (through strands)


• Extensions $\mathbb{1}_{bt} \to M \to \mathbb{1}_{bt}$ are all trivial

Temperley-Lieb works!



The "How to" - some theory



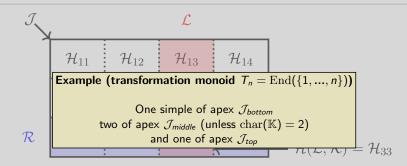
- ▶ Left order \leq_l : $a \leq_l b \Leftrightarrow \exists c : b = ca$
- Left cells: $(a \sim_l b) \Leftrightarrow (a \leq_l b \text{ and } b \leq_l a)$
- Right and two-sided are defined similar
- ► Green cells structure monoids

The "How to" - some theory

- ▶ Left cells \mathcal{L}
- ▶ Right cells \mathcal{R}
- ▶ Two-sided cells \mathcal{J}
 - H-cells = intersection of a left and a right cell

Daniel Tubbenhauer

Monoidal categories, representation gap and cryptography

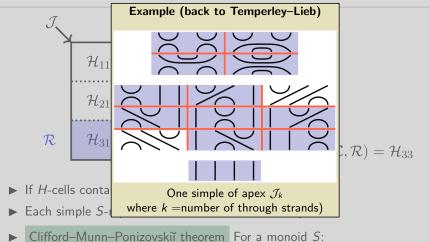

The "How to" - some theory

- ▶ If *H*-cells contain idempotents, then they are groups
- ▶ Each simple S-representation has an associated apex \mathcal{J}
- ► Clifford–Munn–Ponizovskiĭ theorem For a monoid S:

 $\{ \mathsf{simple} \ S \text{-representations of apex } \mathcal{J} \} / \cong \stackrel{1:1}{\longleftrightarrow} \{ \mathsf{simple} \ \mathcal{H}(e) \text{-representations} \} / \cong ,$

where $\mathcal{H}(e) \subset \mathcal{J}$ is any idempotent *H*-cell.

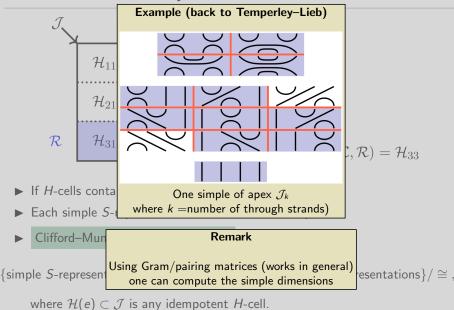
The "How to" - some theory



- ▶ If *H*-cells contain idempotents, then they are groups
 ▶ Each simple S-rep
 Example (C_{3,2} = ⟨a|a³⁺² = a³⟩)
- Clifford-Munn-P One simple of apex \mathcal{J}_{bottom} two of apex \mathcal{J}_{top} (unless char(\mathbb{K}) = 2)

 $\{\text{simple } S\text{-representations of apex } \mathcal{J}\}/\cong \stackrel{1:1}{\longleftrightarrow} \{\text{simple } \mathcal{H}(e)\text{-representations}\}/\cong,$

where $\mathcal{H}(e) \subset \mathcal{J}$ is any idempotent *H*-cell.


The "How to" – some theory

 $\{\text{simple } S\text{-representations of apex } \mathcal{J}\}/\cong \stackrel{1:1}{\longleftrightarrow} \{\text{simple } \mathcal{H}(e)\text{-representations}\}/\cong,$

where $\mathcal{H}(e) \subset \mathcal{J}$ is any idempotent *H*-cell.

The "How to" – some theory

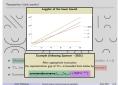
After appropriate truncation

ition gap of TL: is bounded from below by

Main 2010 4/6

 $\frac{1}{2(|x+|2\sqrt{3}|+1]} (|x+|2\sqrt{3}||/2) \in O(2^n e^{-K/2})$

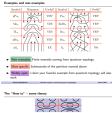
End-to-end encryption

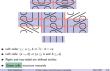

- Symmetric Both parties us the same secret key
- Problem (still) How to transfer the encryption key?
- · Asymmetric Both parties have a public and a private key, no sharing needed

A Toldardinaar Macabi stepsite systemistice pa tol signipady Nun 2612 2/4

Examples and non-examples ------Classical examples Cyclic groups have a big representation gap over Q

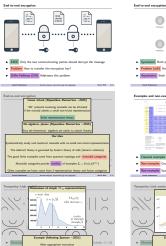
- Non-examples Groups of Lie type have quite small representations
- Non-examples Sporadic groups are too sporadic to be useful





End-to-end encryption • DH Two secrets a, b, public r, send r^* or r^b and set $(r^b)^* = r^{ab} = (r^*)^b$

- ► Catch Relies on the motures to be hard at decompose (discrete log problem)
- BTW Using colors is not practical >), so usually take a, b ∈ N, g ∈ (Z/pZ)ⁿ
- Radd Talkestaan Maaski copper, speeching op ad complety


March 2610 2/16

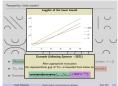
There is still much to do ...

▶ TL, h

ition gap of TL: is bounded from below by

Main 2010 4/6

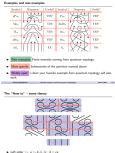
 $\frac{1}{2(|x+|2\sqrt{3}|+1]} (|x+|2\sqrt{3}||/2) \in O(2^n e^{-K/2})$



- Symmetric Both parties us the same secret key
 Problem (still) How to transfer the encryption key?
- Asymmetric Both parties have a public and a private key, no sharing needed

Rade Tablechaser Mandel comprise representation part and signingraphy March 2613 2/16

- \blacktriangleright Classical examples Cyclic groups have a big representation gap over ${\mathbb Q}$
- Non-examples Groups of Lie type have quite small representations
- Non-examples Sporadic groups are too sporadic to be useful



- Catch Relies on the mixtures to be hard ot decompose (discrete log problem)
- BTW Using colors is not practical >), so usually take a, b ∈ N, g ∈ (Z/pZ)^a

March 2610 2/16

Radd Satissian Mandel columns symmetry part symposite

- Left cells: (a ∼, b) ⇔ (a ≤, b and b ≤, a)
- · Right and two-sided are defined similar
- Green cells structure monoids

Karden casa structure monocos

 Kard Materia
 Municipal cogen speeche pe al sprepts
 Mark 89 5/5

Thanks for your attention!

▶ TL, h