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The Temperley–Lieb (TL) calculus is everywhere

Throughout

Please convince yourself that I haven’t messed up
while picking my quotations from my stolen material

Warning

I consider the two 1932 papers below as one

They are quite similar and appeared in the same issue of
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen

Mathematisch-Physikalische Klasse
(not continue from 1933 onward)

What we will see today

(2) Quantum chemistry

(3) Statistical mechanics

(4) Operator theory

(1) Quantum topology

(1) is the newest incarnation of the TL calculus
but easiest to explain, so I start with (1)

Not discussed today, but honorable mentions

The TL calculus also appears in...

...the theory of quantum groups
...integrable models

...representation theory of reductive groups
...categorical quantum mechanics

...logic and computation
...probably more that I am not aware of

Example (of a folk theorem in quantum group theory)

The TL calculus is equivalent to TiltK(Uq(sl2))
(after additive + idempotent completion)

Today’s talk is based on:

my memory (horrible reference...)

The above are easy to google (its worth it!)
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Kauffman’s construction ∼1987

Step 1 Take the framed tangle calculus Tan with generators

and relations being the usual tangle relations, e.g.

= , =

=

Warning

I do not want to be precise what “calculus” means since

it doesn’t matter and is a bit messy in the literature, e.g.:

RTW never used any precise formulation
TL used algebras, but not using that terminology

Jones used algebras and operads, but not using the latter terminology
Kauffman used operads, but not using that terminology

Other researchers might prefer monoidal categories (e.g. following Turaev ∼1990)

Note that Tan is framed
so no relations of the form

=

Kauffman skein relation
!

averaging over ways to get rid of the crossings

Here I am faithfully reproducing a constant
disagreement in the literature over the meaning of the “quantum parameter”

In quantum group theory q = A2

Why the A?

The A in Kauffman’s formula only became clear in the light of Jones’ paper

that appeared a bit earlier than Kauffman’s paper

Before 1985 Kauffman tried but didn’t quite got there; [6] ∼1983 is:

We need this because

= + A2 · + A−2 · + =

implies δ = −A2 − A−2

This is Kauffman’s famous calculation

Example (6 points)

This is a basis of the six strand case
In general, the Catalan numbers give the dimension
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Kauffman’s construction ∼1987
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The RTW construction ∼1932

I Problem Find a model for chemical bonding

I Valence bond theory uses methods of quantum mechanics to explain bonding

I The RTW paper models valence bonds using SL2(C)

The Kauffman bracket via valence bonds

The Kauffman bracket follows easily from the RTW setting:
[x , l ][y , z] = (x1l2 − x2l1)(y1z2 − y2z1) = [x , z][y , l ] + [x , y ][l , z]

Example

= + + + +

Second fundamental theorem of invariant theory via valence bonds

RTW also prove that crossingless matching form a basis

Modern formulation

RTW prove that there is a fully faithful functor
TLC(−2)→ RepC(SL2(C))

Symmetric powers

Actually it is more general:
RTW also address these questions for symmetric powers

with SymkC2 corresponding to a k-valence bond

Let’s ask SAGEMath whether the RTW basis has the correct number of elements:

Indeed, 12 + 22 = 5 and 12 + 22 + 12 = 6

Edward Teller is the big name here

Teller’s Wikipedia page has 25 printed pages (01.Mar.2022); it is very readable
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The RTW construction ∼1932

I RTW now put the atoms on a circle

I Then RTW draw bonds as lines

I The result is TL diagrams coming from valence theory:

atoms=points and bonds=strands
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The TL construction ∼1971

I The Ising model’s interpretation is explained above Magnetism

I The Potts model is a generalization of the Ising model

I TL studied these Solid-state physics

ZX =
∑

states exp(−βH)

H =
∑

edges δσi ,σj J, J =energy (a number)

The Potts model is very applicable:

For all of these there is some form of the TL calculus

Recall from last time that solving
the model “is equivalent to having good expressions for transfer matrices”

The operators satisfy the TL relations

Ek !

k

EkEk =
√
QEk ! =

√
Q

EkEk±1Ek = Ek ! =

EkEl = ElEk for |k − l | > 1 ! far commutativity

TL then show that
ZS is determined by the TL relations

TL show that ZPotts and ZIce-type determine one another

General solution of the Potts model

ZG ≈ T (a, b)

where T (x , y) is the Tutte polynomial
for a = (|Q|+ exp(βJ)− 1)/(exp(βJ)− 1) and b = exp(βJ)

Impressive!

More than 250000 hits in total

This is a widely spread incarnation of the TL calculus
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The TL construction ∼1971

I V = CQ ; the operators below are on tensor powers of V

I p =multiplication by 1/
√
Q, di,i+1(vi ⊗ vj) = δijvi ⊗ vi

Q = (A + A−1)2, e.g. Q = 2 implies A = (−1)1/4
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I Up to scaling, Ek = 1− Tk(k+1) Kauffman bracket

I The transfer matrix with free horizontal boundary conditions is a multiple of(∏n−1
i=1 aE2i + 1

)(∏n
i=1 bE2i−1 + 1

)
where a and b determined by the
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The TL construction ∼1971

I TL also write down and study cell modules

I They use the usual diagrammatics to describe these

I They did not use diagrammatics to describe TLC(
√
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Jones’ construction ∼1983

I Factor = von Neumann algebra with trivial center

I A subfactor is an inclusion of factors N ⊂ M

I Murray–von Neumann ∼1930+ classified factors by types: I , II1, II∞ and III

I II1 are the “most exciting” ones They have a unique trace!

We will stick with these (I drop the “of type II1” – it should appear everywhere)

The word “algebra” is highlighted
because there will be representations!

Example

M is a factor, G a nice group, then MG ⊂ M is a subfactor

Vague slogan Subfactors ! fixed points of a “quantum group” G action

The is also a version of Galois correspondence
and one can recover G from MG ⊂ M

In this sense subfactor theory generalizes finite group theory

Jones’ paper was one of the starting point of
transferring subfactors from functional analysis to algebra/combinatorics

Note the “quantization” below 4:

This was a weird/exciting result!

Jones: The most challenging part is constructing these subfactors

Sketch of the quantization argument

Associated a graph G to N ⊂ M and “[M : N] = pf (G)”
Then use Kronecker’s theorem

{ei |i ≥ n} generate a factor Rn

R2 ⊂ R1 is a subfactor of index 4 cos2( π
k+2

)

The Markov property!

In braid pictures (crossing is given by Kauffman skein formula )

In hindsight the crucial result

Jones’ proved about TLC(δ)
is the existence of a Markov trace

Why? Well, because of the (Birman–)Jones polynomial:

Jones also implicitly coined the name “TL algebra” ∼1985:

Daniel Tubbenhauer Temperley–Lieb times four March 2022 6 / 7



Jones’ construction ∼1983

I Factor = von Neumann algebra with trivial center

I A subfactor is an inclusion of factors N ⊂ M

I Murray–von Neumann ∼1930+ classified factors by types: I , II1, II∞ and III

I II1 are the “most exciting” ones They have a unique trace!

We will stick with these (I drop the “of type II1” – it should appear everywhere)

The word “algebra” is highlighted
because there will be representations!

Example

M is a factor, G a nice group, then MG ⊂ M is a subfactor

Vague slogan Subfactors ! fixed points of a “quantum group” G action

The is also a version of Galois correspondence
and one can recover G from MG ⊂ M

In this sense subfactor theory generalizes finite group theory

Jones’ paper was one of the starting point of
transferring subfactors from functional analysis to algebra/combinatorics

Note the “quantization” below 4:

This was a weird/exciting result!

Jones: The most challenging part is constructing these subfactors

Sketch of the quantization argument

Associated a graph G to N ⊂ M and “[M : N] = pf (G)”
Then use Kronecker’s theorem

{ei |i ≥ n} generate a factor Rn

R2 ⊂ R1 is a subfactor of index 4 cos2( π
k+2

)

The Markov property!

In braid pictures (crossing is given by Kauffman skein formula )

In hindsight the crucial result

Jones’ proved about TLC(δ)
is the existence of a Markov trace

Why? Well, because of the (Birman–)Jones polynomial:

Jones also implicitly coined the name “TL algebra” ∼1985:

Daniel Tubbenhauer Temperley–Lieb times four March 2022 6 / 7



Jones’ construction ∼1983

I Factor = von Neumann algebra with trivial center

I A subfactor is an inclusion of factors N ⊂ M

I Murray–von Neumann ∼1930+ classified factors by types: I , II1, II∞ and III

I II1 are the “most exciting” ones They have a unique trace!

We will stick with these (I drop the “of type II1” – it should appear everywhere)

The word “algebra” is highlighted
because there will be representations!

Example

M is a factor, G a nice group, then MG ⊂ M is a subfactor

Vague slogan Subfactors ! fixed points of a “quantum group” G action

The is also a version of Galois correspondence
and one can recover G from MG ⊂ M

In this sense subfactor theory generalizes finite group theory

Jones’ paper was one of the starting point of
transferring subfactors from functional analysis to algebra/combinatorics

Note the “quantization” below 4:

This was a weird/exciting result!

Jones: The most challenging part is constructing these subfactors

Sketch of the quantization argument

Associated a graph G to N ⊂ M and “[M : N] = pf (G)”
Then use Kronecker’s theorem

{ei |i ≥ n} generate a factor Rn

R2 ⊂ R1 is a subfactor of index 4 cos2( π
k+2

)

The Markov property!

In braid pictures (crossing is given by Kauffman skein formula )

In hindsight the crucial result

Jones’ proved about TLC(δ)
is the existence of a Markov trace

Why? Well, because of the (Birman–)Jones polynomial:

Jones also implicitly coined the name “TL algebra” ∼1985:

Daniel Tubbenhauer Temperley–Lieb times four March 2022 6 / 7



Jones’ construction ∼1983

I Factor = von Neumann algebra with trivial center

I A subfactor is an inclusion of factors N ⊂ M

I Murray–von Neumann ∼1930+ classified factors by types: I , II1, II∞ and III

I II1 are the “most exciting” ones They have a unique trace!

We will stick with these (I drop the “of type II1” – it should appear everywhere)

The word “algebra” is highlighted
because there will be representations!

Example

M is a factor, G a nice group, then MG ⊂ M is a subfactor

Vague slogan Subfactors ! fixed points of a “quantum group” G action

The is also a version of Galois correspondence
and one can recover G from MG ⊂ M

In this sense subfactor theory generalizes finite group theory

Jones’ paper was one of the starting point of
transferring subfactors from functional analysis to algebra/combinatorics

Note the “quantization” below 4:

This was a weird/exciting result!

Jones: The most challenging part is constructing these subfactors

Sketch of the quantization argument

Associated a graph G to N ⊂ M and “[M : N] = pf (G)”
Then use Kronecker’s theorem

{ei |i ≥ n} generate a factor Rn

R2 ⊂ R1 is a subfactor of index 4 cos2( π
k+2

)

The Markov property!

In braid pictures (crossing is given by Kauffman skein formula )

In hindsight the crucial result

Jones’ proved about TLC(δ)
is the existence of a Markov trace

Why? Well, because of the (Birman–)Jones polynomial:

Jones also implicitly coined the name “TL algebra” ∼1985:
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The Temperley–Lieb (TL) calculus is everywhere

The TL calculus was discovered several times, e.g.:

I Via valence bond theory Rumer–Teller–Weyl (RTW) ∼1932

I Via the Potts model Temperley–Lieb ∼1971

I Via subfactors Jones ∼1983

I Via skein theory Kauffman ∼1987

Throughout

Please convince yourself that I haven’t messed up
while picking my quotations from my stolen material

Warning

I consider the two 1932 papers below as one

They are quite similar and appeared in the same issue of
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen

Mathematisch-Physikalische Klasse
(not continue from 1933 onward)

What we will see today

(2) Quantum chemistry

(3) Statistical mechanics

(4) Operator theory

(1) Quantum topology

(1) is the newest incarnation of the TL calculus
but easiest to explain, so I start with (1)

Not discussed today, but honorable mentions

The TL calculus also appears in...

...the theory of quantum groups
...integrable models

...representation theory of reductive groups
...categorical quantum mechanics

...logic and computation
...probably more that I am not aware of

Example (of a folk theorem in quantum group theory)

The TL calculus is equivalent to TiltK(Uq(sl2))
(after additive + idempotent completion)

Today’s talk is based on:

my memory (horrible reference...)

The above are easy to google (its worth it!)
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Kauffman’s construction ∼1987

Step 2 Make Tan Z[A,A−1]-linear and impose

= A · + A−1 ·

Kauffman skein relation

Warning

I do not want to be precise what “calculus” means since

it doesn’t matter and is a bit messy in the literature, e.g.:

RTW never used any precise formulation
TL used algebras, but not using that terminology

Jones used algebras and operads, but not using the latter terminology
Kauffman used operads, but not using that terminology

Other researchers might prefer monoidal categories (e.g. following Turaev ∼1990)

Note that Tan is framed
so no relations of the form

=

Kauffman skein relation
!

averaging over ways to get rid of the crossings

Here I am faithfully reproducing a constant
disagreement in the literature over the meaning of the “quantum parameter”

In quantum group theory q = A2

Why the A?

The A in Kauffman’s formula only became clear in the light of Jones’ paper

that appeared a bit earlier than Kauffman’s paper

Before 1985 Kauffman tried but didn’t quite got there; [6] ∼1983 is:

We need this because

= + A2 · + A−2 · + =

implies δ = −A2 − A−2

This is Kauffman’s famous calculation

Example (6 points)

This is a basis of the six strand case
In general, the Catalan numbers give the dimension
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The RTW construction ∼1932

I RTW now put the atoms on a circle

I Then RTW draw bonds as lines

I The result is TL diagrams coming from valence theory:

atoms=points and bonds=strands

The Kauffman bracket via valence bonds

The Kauffman bracket follows easily from the RTW setting:
[x , l ][y , z] = (x1l2 − x2l1)(y1z2 − y2z1) = [x , z][y , l ] + [x , y ][l , z]

Example

= + + + +

Second fundamental theorem of invariant theory via valence bonds

RTW also prove that crossingless matching form a basis

Modern formulation

RTW prove that there is a fully faithful functor
TLC(−2)→ RepC(SL2(C))

Symmetric powers

Actually it is more general:
RTW also address these questions for symmetric powers

with SymkC2 corresponding to a k-valence bond

Let’s ask SAGEMath whether the RTW basis has the correct number of elements:

Indeed, 12 + 22 = 5 and 12 + 22 + 12 = 6

Edward Teller is the big name here

Teller’s Wikipedia page has 25 printed pages (01.Mar.2022); it is very readable
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The TL construction ∼1971

I The Potts model is a lattice model

I The states are “spins” from 1 to Q (Ising Q = 2)

I We want to know ZS = ZS(β = 1/kT ) Partition function

ZX =
∑

states exp(−βH)

H =
∑

edges δσi ,σj J, J =energy (a number)

The Potts model is very applicable:

For all of these there is some form of the TL calculus

Recall from last time that solving
the model “is equivalent to having good expressions for transfer matrices”

The operators satisfy the TL relations

Ek !

k

EkEk =
√
QEk ! =

√
Q

EkEk±1Ek = Ek ! =

EkEl = ElEk for |k − l | > 1 ! far commutativity

TL then show that
ZS is determined by the TL relations

TL show that ZPotts and ZIce-type determine one another

General solution of the Potts model

ZG ≈ T (a, b)

where T (x , y) is the Tutte polynomial
for a = (|Q|+ exp(βJ)− 1)/(exp(βJ)− 1) and b = exp(βJ)

Impressive!

More than 250000 hits in total

This is a widely spread incarnation of the TL calculus
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Jones’ construction ∼1983

Jones’ projectors satisfy the scaled TL relations for δ = [M : N] = 4 cos2( π
k+2 )

ek ! 1
[M:N]

k

I ekek = ek ! =

I ekek±1ek = 1
[M:N]ek ! = 1

[M:N]

I ekel = elek for |k − l | > 1 ! far commutativity

The word “algebra” is highlighted
because there will be representations!

Example

M is a factor, G a nice group, then MG ⊂ M is a subfactor

Vague slogan Subfactors ! fixed points of a “quantum group” G action

The is also a version of Galois correspondence
and one can recover G from MG ⊂ M

In this sense subfactor theory generalizes finite group theory

Jones’ paper was one of the starting point of
transferring subfactors from functional analysis to algebra/combinatorics

Note the “quantization” below 4:

This was a weird/exciting result!

Jones: The most challenging part is constructing these subfactors

Sketch of the quantization argument

Associated a graph G to N ⊂ M and “[M : N] = pf (G)”
Then use Kronecker’s theorem

{ei |i ≥ n} generate a factor Rn

R2 ⊂ R1 is a subfactor of index 4 cos2( π
k+2

)

The Markov property!

In braid pictures (crossing is given by Kauffman skein formula )

In hindsight the crucial result

Jones’ proved about TLC(δ)
is the existence of a Markov trace

Why? Well, because of the (Birman–)Jones polynomial:

Jones also implicitly coined the name “TL algebra” ∼1985:
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Jones’ construction ∼1983
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There is still much to do...

Thanks for your attention!
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The Temperley–Lieb (TL) calculus is everywhere

The TL calculus was discovered several times, e.g.:

I Via valence bond theory Rumer–Teller–Weyl (RTW) ∼1932

I Via the Potts model Temperley–Lieb ∼1971

I Via subfactors Jones ∼1983

I Via skein theory Kauffman ∼1987

Throughout

Please convince yourself that I haven’t messed up
while picking my quotations from my stolen material

Warning

I consider the two 1932 papers below as one

They are quite similar and appeared in the same issue of
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen

Mathematisch-Physikalische Klasse
(not continue from 1933 onward)

What we will see today

(2) Quantum chemistry

(3) Statistical mechanics

(4) Operator theory

(1) Quantum topology

(1) is the newest incarnation of the TL calculus
but easiest to explain, so I start with (1)

Not discussed today, but honorable mentions

The TL calculus also appears in...

...the theory of quantum groups
...integrable models

...representation theory of reductive groups
...categorical quantum mechanics

...logic and computation
...probably more that I am not aware of

Example (of a folk theorem in quantum group theory)

The TL calculus is equivalent to TiltK(Uq(sl2))
(after additive + idempotent completion)

Today’s talk is based on:

my memory (horrible reference...)

The above are easy to google (its worth it!)

Daniel Tubbenhauer Temperley–Lieb times four March 2022 2 / 7

The Temperley–Lieb (TL) calculus is everywhere

The TL calculus was discovered several times, e.g.:

I Via valence bond theory Rumer–Teller–Weyl (RTW) ∼1932

I Via the Potts model Temperley–Lieb ∼1971

I Via subfactors Jones ∼1983

I Via skein theory Kauffman ∼1987

Throughout

Please convince yourself that I haven’t messed up
while picking my quotations from my stolen material

Warning

I consider the two 1932 papers below as one

They are quite similar and appeared in the same issue of
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen

Mathematisch-Physikalische Klasse
(not continue from 1933 onward)

What we will see today

(2) Quantum chemistry

(3) Statistical mechanics

(4) Operator theory

(1) Quantum topology

(1) is the newest incarnation of the TL calculus
but easiest to explain, so I start with (1)

Not discussed today, but honorable mentions

The TL calculus also appears in...

...the theory of quantum groups
...integrable models

...representation theory of reductive groups
...categorical quantum mechanics

...logic and computation
...probably more that I am not aware of

Example (of a folk theorem in quantum group theory)

The TL calculus is equivalent to TiltK(Uq(sl2))
(after additive + idempotent completion)

Today’s talk is based on:

my memory (horrible reference...)

The above are easy to google (its worth it!)

Daniel Tubbenhauer Temperley–Lieb times four March 2022 2 / 7

Kauffman’s construction ∼1987

Step 2 Make Tan Z[A,A−1]-linear and impose

= A · + A−1 ·

Kauffman skein relation

Warning

I do not want to be precise what “calculus” means since

it doesn’t matter and is a bit messy in the literature, e.g.:

RTW never used any precise formulation
TL used algebras, but not using that terminology

Jones used algebras and operads, but not using the latter terminology
Kauffman used operads, but not using that terminology

Other researchers might prefer monoidal categories (e.g. following Turaev ∼1990)

Note that Tan is framed
so no relations of the form

=

Kauffman skein relation
!

averaging over ways to get rid of the crossings

Here I am faithfully reproducing a constant
disagreement in the literature over the meaning of the “quantum parameter”

In quantum group theory q = A2

Why the A?

The A in Kauffman’s formula only became clear in the light of Jones’ paper

that appeared a bit earlier than Kauffman’s paper

Before 1985 Kauffman tried but didn’t quite got there; [6] ∼1983 is:

We need this because

= + A2 · + A−2 · + =

implies δ = −A2 − A−2

This is Kauffman’s famous calculation

Example (6 points)

This is a basis of the six strand case
In general, the Catalan numbers give the dimension
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The RTW construction ∼1932

I RTW now put the atoms on a circle

I Then RTW draw bonds as lines

I The result is TL diagrams coming from valence theory:

atoms=points and bonds=strands

The Kauffman bracket via valence bonds

The Kauffman bracket follows easily from the RTW setting:
[x , l ][y , z] = (x1l2 − x2l1)(y1z2 − y2z1) = [x , z][y , l ] + [x , y ][l , z]

Example

= + + + +

Second fundamental theorem of invariant theory via valence bonds

RTW also prove that crossingless matching form a basis

Modern formulation

RTW prove that there is a fully faithful functor
TLC(−2)→ RepC(SL2(C))

Symmetric powers

Actually it is more general:
RTW also address these questions for symmetric powers

with SymkC2 corresponding to a k-valence bond

Let’s ask SAGEMath whether the RTW basis has the correct number of elements:

Indeed, 12 + 22 = 5 and 12 + 22 + 12 = 6

Edward Teller is the big name here

Teller’s Wikipedia page has 25 printed pages (01.Mar.2022); it is very readable
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The TL construction ∼1971

I The Potts model is a lattice model

I The states are “spins” from 1 to Q (Ising Q = 2)

I We want to know ZS = ZS(β = 1/kT ) Partition function

ZX =
∑

states exp(−βH)

H =
∑

edges δσi ,σj J, J =energy (a number)

The Potts model is very applicable:

For all of these there is some form of the TL calculus

Recall from last time that solving
the model “is equivalent to having good expressions for transfer matrices”

The operators satisfy the TL relations

Ek !

k

EkEk =
√
QEk ! =

√
Q

EkEk±1Ek = Ek ! =

EkEl = ElEk for |k − l | > 1 ! far commutativity

TL then show that
ZS is determined by the TL relations

TL show that ZPotts and ZIce-type determine one another

General solution of the Potts model

ZG ≈ T (a, b)

where T (x , y) is the Tutte polynomial
for a = (|Q|+ exp(βJ)− 1)/(exp(βJ)− 1) and b = exp(βJ)

Impressive!

More than 250000 hits in total

This is a widely spread incarnation of the TL calculus
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The TL construction ∼1971

I TL also write down and study cell modules
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√
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√
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Jones’ construction ∼1983

Jones’ projectors satisfy the scaled TL relations for δ = [M : N] = 4 cos2( π
k+2 )

ek ! 1
[M:N]

k

I ekek = ek ! =

I ekek±1ek = 1
[M:N]ek ! = 1

[M:N]

I ekel = elek for |k − l | > 1 ! far commutativity

The word “algebra” is highlighted
because there will be representations!

Example

M is a factor, G a nice group, then MG ⊂ M is a subfactor

Vague slogan Subfactors ! fixed points of a “quantum group” G action

The is also a version of Galois correspondence
and one can recover G from MG ⊂ M

In this sense subfactor theory generalizes finite group theory

Jones’ paper was one of the starting point of
transferring subfactors from functional analysis to algebra/combinatorics

Note the “quantization” below 4:

This was a weird/exciting result!

Jones: The most challenging part is constructing these subfactors

Sketch of the quantization argument

Associated a graph G to N ⊂ M and “[M : N] = pf (G)”
Then use Kronecker’s theorem

{ei |i ≥ n} generate a factor Rn

R2 ⊂ R1 is a subfactor of index 4 cos2( π
k+2

)

The Markov property!

In braid pictures (crossing is given by Kauffman skein formula )

In hindsight the crucial result

Jones’ proved about TLC(δ)
is the existence of a Markov trace

Why? Well, because of the (Birman–)Jones polynomial:

Jones also implicitly coined the name “TL algebra” ∼1985:
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There is still much to do...

Thanks for your attention!
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