
A brief, incomplete, and mostly wrong history of quantum groups

Or: From ice to R-matrices

Daniel Tubbenhauer

Hmm, what a “quantum group” is appears debatable. Nevertheless, I’ll give it a go!
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Neither quantum nor group...?

Throughout

Please convince yourself that I haven’t messed up
while picking my quotations from my stolen material

Today

I will motivate the story from the perspective of statistical mechanics

Since their introduction quantum groups have appear “everywhere”:

but I won’t go into this (my apologies)

Today’s talk is based on:

my memory (horrible reference...)

The above are easy to google (its worth it!)
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Statistical mechanics in a nutshell

I Statistical mechanics is a branch of physics that pervades all other branches

I Its exact incarnation is different in each quadrant, but the basics are identical

I Instead of microstates σ describe a set Ω of microstates, the macrostates

I will now motivate the whole story of statistical mechanics
in general, although we will not use some of the involved notions

Warning

V and N are replaced by different
quantities in different situations

T=Temperature , k=Boltzmann constant (for normalizing units)
exp(−Eσ/kT ) = Boltzmann weight

Enter, the partition function

ZS has many amazing properties. For one, it can be used to write an
endless number of clever identities

Example Expected energy 〈E〉 = U = −∂/∂β logZS

Example Entropy SS = k(1− β∂/∂β) logZS

Solving the model = finding a good expression of ZS

Warning

The details depend on the model
and the precise setting might vary!

Warning

I ignore boundary conditions until later

In any case, let us
jump into one of them:

the vertex model (proposed by Pauling ∼1935)
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Statistical mechanics in a nutshell

too complicated:

good:
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Statistical mechanics in a nutshell

side x

side y

interaction x-y

I Often models involve collections of locally interacting sites on some lattice

I The partition function ZX makes sense for a finite subset X of the lattice

I Then consider an increasing family of subsets whose union is the whole system

I will now motivate the whole story of statistical mechanics
in general, although we will not use some of the involved notions

Warning

V and N are replaced by different
quantities in different situations

T=Temperature , k=Boltzmann constant (for normalizing units)
exp(−Eσ/kT ) = Boltzmann weight

Enter, the partition function

ZS has many amazing properties. For one, it can be used to write an
endless number of clever identities

Example Expected energy 〈E〉 = U = −∂/∂β logZS

Example Entropy SS = k(1− β∂/∂β) logZS

Solving the model = finding a good expression of ZS

Warning

The details depend on the model
and the precise setting might vary!

Warning

I ignore boundary conditions until later

In any case, let us
jump into one of them:

the vertex model (proposed by Pauling ∼1935)

Daniel Tubbenhauer A brief, incomplete, and mostly wrong history of quantum groups March 2022 3 / 10



Statistical mechanics in a nutshell

state σx

state σy

interaction σx -σy

I In these models often state=“colors on edges” for X with N sides

I Energy of σ is
∏

edges E (σx , σy , color) ⇒ Local partition function ZX

I Goal Find a good expression of limX→S ZX

I will now motivate the whole story of statistical mechanics
in general, although we will not use some of the involved notions

Warning

V and N are replaced by different
quantities in different situations

T=Temperature , k=Boltzmann constant (for normalizing units)
exp(−Eσ/kT ) = Boltzmann weight

Enter, the partition function

ZS has many amazing properties. For one, it can be used to write an
endless number of clever identities

Example Expected energy 〈E〉 = U = −∂/∂β logZS

Example Entropy SS = k(1− β∂/∂β) logZS

Solving the model = finding a good expression of ZS

Warning

The details depend on the model
and the precise setting might vary!

Warning

I ignore boundary conditions until later

In any case, let us
jump into one of them:

the vertex model (proposed by Pauling ∼1935)

Daniel Tubbenhauer A brief, incomplete, and mostly wrong history of quantum groups March 2022 3 / 10



Statistical mechanics in a nutshell

state σx

state σy

interaction σx -σy

I In these models often state=“colors on edges” for X with N sides

I Energy of σ is
∏

edges E (σx , σy , color) ⇒ Local partition function ZX

I Goal Find a good expression of limX→S ZX

I will now motivate the whole story of statistical mechanics
in general, although we will not use some of the involved notions

Warning

V and N are replaced by different
quantities in different situations

T=Temperature , k=Boltzmann constant (for normalizing units)
exp(−Eσ/kT ) = Boltzmann weight

Enter, the partition function

ZS has many amazing properties. For one, it can be used to write an
endless number of clever identities

Example Expected energy 〈E〉 = U = −∂/∂β logZS

Example Entropy SS = k(1− β∂/∂β) logZS

Solving the model = finding a good expression of ZS

Warning

The details depend on the model
and the precise setting might vary!

Warning

I ignore boundary conditions until later

In any case, let us
jump into one of them:

the vertex model (proposed by Pauling ∼1935)

Daniel Tubbenhauer A brief, incomplete, and mostly wrong history of quantum groups March 2022 3 / 10



The ice-type vertex model

state σx

state σy

interaction σx -σy

I Ice-type = each edge gets an orientation

I Makes sense for any lattice but lets restrict to the square lattice Z2

I Want to compute ZX

Warning

Strictly speaking there are a few variants
like a six-vertex model, allowing only six local orientation configurations, e.g.

We will come back to this 6-vertex version later

Warning

Actually hexagonal lattices would be better
but they are harder so lets ignore them

Most common ice lattice:

The tool we need to compute ZX

are transfer matrices
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I This models ice lattices and other real crystals with hydrogen bonds
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The ice-type vertex model

• • • •

• • • •

• • • •

• • • •

R(a, b|c , d) = exp(−βεc,da,b )! • b

c

a

d

for a, b, c , d ∈ {↑, ↓}

I There a sixteen local configurations

I ZX =
∑

states

∏
vertices R(a, b|c , d)

Warning

Strictly speaking there are a few variants
like a six-vertex model, allowing only six local orientation configurations, e.g.

We will come back to this 6-vertex version later
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Actually hexagonal lattices would be better
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Transfer matrices

X = • • •a b c d

ZX =
∑

a,b,c,d

R(a, b)R(b, c)R(c , d)

R =




0 R(a, b) 0 0
R(a, b) 0 R(b, c) 0

0 R(b, c) 0 R(c , d)
0 0 R(c , d) 0


 , T =

∑

a,b,c,d

R

a− d entry of R3 is R(a, b)R(b, c)R(c , d)

I Toy-model: ice-type for Z with fixed boundary

I Slogan Summation over indices in ZX becomes the summation over indices in

matrix multiplication

I The boundary entry of RN encodes the partition function

Upshot

Use linear algebra to understand ZX

and study the asymptotic behavior of RN

Keyword: Largest eigenvalue

Perron–Frobenius theorem (Perron ∼1907, Frobenius ∼1912)
(Note quite relevant for the vertex model, but still cool)

Irreducible matrices with entries from R≥0

have an eigenvalue pf ∈ R≥0 and

an associated eigenvector ~pf ∈ Rn
≥0

The growth rate of RN is roughly given by pf N
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Transfer matrices

X =

T row =
∑

ai

R(an, a1|x1, y1)...R(an−1, an|xn, yn)

I For Z2 with periodic boundary use transfer matrix above

I Problem Computing the largest eigenvalue becomes infeasible

Upshot

Use linear algebra to understand ZX

and study the asymptotic behavior of RN
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Commuting transfer matrices

I Idea (Baxter ∼1975) Use only commuting transfer matrices

I Upshot Have a common eigenvector and, using it, are relatively easy to study

Shorthand notation

λ, µ are the spectral
parameters of the
transfer matrices

(largest eigenvalues)

Next

The crucial YBE in more detail
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Commuting transfer matrices

I First Invertibility

I Second Yang–Baxter equation (YBE)

Shorthand notation

λ, µ are the spectral
parameters of the
transfer matrices

(largest eigenvalues)
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The crucial YBE in more detail
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Commuting transfer matrices

These two relations ensure commutativity , see above
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Yang–Baxter equation

R(a, b|c , d) = exp(−βεc,da,b )! • b

c

a

d

for a, b, c , d ∈ {↑, ↓}

R! • V

V

V

V

λ

nowadays more often drawn as •

I The R-matrix can be interpreted as a map V ⊗ V → V ⊗ V

I V = vector space with basis {↑, ↓}

Notation

If R : V ⊗ V → V ⊗ V , then
Ri(i+1) : V⊗k → V⊗k

is given by applying R to factors i and i + 1

Strategy

Ignore how to proceed once we have commuting transfer matrices
(that is actually hard)

just focus on solving the YBE

Crucial

The most importation question is

whether there exists any solution at all
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Yang–Baxter equation

The YBE reads

R12(λ)R23(ρ)R12(µ) = R23(µ)R12(ρ)R23(λ)

where R(x) = transfer matrix for x
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Yang–Baxter equation

I The equations represented by the diagram form a huge system of highly
non-linear equations

I The YBE involves only three vertices

Notation
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Solving YBE (for the six vertex model)

R(z) =
1

zq − z−1q−1




zq−1 − z−1q 0 0 0
0 z−1(q−1 − q) z − z−1 0
0 z − z−1 z(q−1 − q) 0
0 0 0 zq−1 − z−1q




z = exp(−λ), q = exp(θ)

R = lim
z→0

R(z)

R =




q2 0 0 0
0 q2 − 1 q 0
0 q 0 0
0 0 0 q2




I The above is a solution for the YBE

I The matrix R is what one often sees in quantum groups λ =∞ limit

I I will now explain where this solution comes from

Note that R is not a

solution to the YBE in general (since λ =∞)

but only satisfies the braid relations :

R12R23R12 = R23R12R23

With general parameters we want R12(z)R23(yz)R12(y) = R23(y)R12(yz)R23(z)

R(z) is a solution for the six vertex model

↑↑ ↑↓ ↓↑ ↓↓
↑↑ zq−1 − z−1q 0 0 0

↑↓ 0 z−1(q−1 − q) z − z−1 0

↓↑ 0 z − z−1 z(q−1 − q) 0

↓↓ 0 0 0 zq−1 − z−1q
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How to discover quantum sl2

I The standard module V = L(1) of sl2 = 〈E ,F ,H〉 has basis vectors ↑, ↓
I With respect to this basis

E =

(
0 1
0 0

)
,F =

(
0 0
1 0

)
,H =

(
1 0
0 −1

)

I sl2 has one simple module L(n) per n ∈ N
I For n = 4 this module is

E 7→




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


 ,F 7→




0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0


 ,H 7→




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3




I The category of finite dimensional sl2-modules is semisimple

Before you ask:
my ground field is C

Before you ask:
my ground field is C(q)
for q a formal variable

[n] = qn−1 + qn−3 + ... + q−n+3 + q−n+1

Stop!

You used the coproduct here:
∆(K) = K ⊗ K , ∆(E) = E ⊗ K + 1⊗ E and ∆(F ) = F ⊗ 1 + K−1 ⊗ F

Where does that come from?

I do not know!

Drinfel’d and Jimbo might say: “It makes Uq(sl2)
a Hopf algebra and there are not many options to achieve that”

But that is an “in hindsight” interpretation, e.g. Faddeev writes:

Faddeev’s school invented Uq(sl2) without knowing Hopf algebras!

The comultiplication is the point!

But they are not equivalent as monoidal categories!

Idea

In order to have a spectral parameter
we need a quantum group with one two-dimensional module

Lz for z ∈ C \ {0}

The affine quantum Lie algebra Uq(ŝl2) almost does the job!

Uq(ŝl2) can be constructed as a central extension of sl2 ⊗ C[t, t−1]
and X ⊗ tk acts on v ∈ V as zkX � v

U ′q(ŝl2) = subalgebra supported on classical weights
The R-matrix is then in EndU′q(ŝl2)(Lz ⊗ Lz)

After some nontrivial algebra:

ZS ∼ chLΛ0

∞
0 1

LΛ0 ! vector representation of Uq(ŝl2)

ZS ∼ chLΛ0 ∼
∑

a∈2Z
qa

2/2∏∞
n=1(1−q2n)

q is a function in T

This was the first instance of
“Characters of simple modules of

quantum affine Lie algebras
turn up everywhere”

What came next?

If you understand sl2, then you should try g!

Initiated by Drinfel’d + Jimbo ∼1985+
and still very much in construction
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a Hopf algebra and there are not many options to achieve that”

But that is an “in hindsight” interpretation, e.g. Faddeev writes:

Faddeev’s school invented Uq(sl2) without knowing Hopf algebras!

The comultiplication is the point!

But they are not equivalent as monoidal categories!

Idea

In order to have a spectral parameter
we need a quantum group with one two-dimensional module

Lz for z ∈ C \ {0}

The affine quantum Lie algebra Uq(ŝl2) almost does the job!

Uq(ŝl2) can be constructed as a central extension of sl2 ⊗ C[t, t−1]
and X ⊗ tk acts on v ∈ V as zkX � v

U ′q(ŝl2) = subalgebra supported on classical weights
The R-matrix is then in EndU′q(ŝl2)(Lz ⊗ Lz)

After some nontrivial algebra:

ZS ∼ chLΛ0

∞
0 1

LΛ0 ! vector representation of Uq(ŝl2)

ZS ∼ chLΛ0 ∼
∑

a∈2Z
qa

2/2∏∞
n=1(1−q2n)

q is a function in T

This was the first instance of
“Characters of simple modules of

quantum affine Lie algebras
turn up everywhere”

What came next?

If you understand sl2, then you should try g!

Initiated by Drinfel’d + Jimbo ∼1985+
and still very much in construction
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Statistical mechanics in a nutshell

I Statistical mechanics is a branch of physics that pervades all other branches

I Its exact incarnation is different in each quadrant, but the basics are identical

I Instead of microstates σ describe a set Ω of microstates, the macrostates

I will now motivate the whole story of statistical mechanics
in general, although we will not use some of the involved notions

Warning

V and N are replaced by different
quantities in different situations

T=Temperature , k=Boltzmann constant (for normalizing units)
exp(−Eσ/kT ) = Boltzmann weight

Enter, the partition function

ZS has many amazing properties. For one, it can be used to write an
endless number of clever identities

Example Expected energy 〈E〉 = U = −∂/∂β logZS

Example Entropy SS = k(1− β∂/∂β) logZS

Solving the model = finding a good expression of ZS

Warning

The details depend on the model
and the precise setting might vary!

Warning

I ignore boundary conditions until later

In any case, let us
jump into one of them:

the vertex model (proposed by Pauling ∼1935)
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The ice-type vertex model

I This models ice lattices and other real crystals with hydrogen bonds

I Lieb found an exact solution for Z2 ∼1967; Z3 is still open

Warning

Strictly speaking there are a few variants
like a six-vertex model, allowing only six local orientation configurations, e.g.

We will come back to this 6-vertex version later

Warning

Actually hexagonal lattices would be better
but they are harder so lets ignore them

Most common ice lattice:

The tool we need to compute ZX

are transfer matrices
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Transfer matrices

X = • • •a b c d

ZX =
∑

a,b,c,d

R(a, b)R(b, c)R(c , d)

R =




0 R(a, b) 0 0
R(a, b) 0 R(b, c) 0

0 R(b, c) 0 R(c , d)
0 0 R(c , d) 0


 , T =

∑

a,b,c,d

R

a− d entry of R3 is R(a, b)R(b, c)R(c , d)

I Toy-model: ice-type for Z with fixed boundary

I Slogan Summation over indices in ZX becomes the summation over indices in

matrix multiplication

I The boundary entry of RN encodes the partition function

Upshot

Use linear algebra to understand ZX

and study the asymptotic behavior of RN

Keyword: Largest eigenvalue

Perron–Frobenius theorem (Perron ∼1907, Frobenius ∼1912)
(Note quite relevant for the vertex model, but still cool)

Irreducible matrices with entries from R≥0

have an eigenvalue pf ∈ R≥0 and

an associated eigenvector ~pf ∈ Rn
≥0

The growth rate of RN is roughly given by pf N
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Commuting transfer matrices

I Idea (Baxter ∼1975) Use only commuting transfer matrices

I Upshot Have a common eigenvector and, using it, are relatively easy to study

Shorthand notation

λ, µ are the spectral
parameters of the
transfer matrices

(largest eigenvalues)

Next

The crucial YBE in more detail
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Commuting transfer matrices

I First Invertibility

I Second Yang–Baxter equation (YBE)

Shorthand notation

λ, µ are the spectral
parameters of the
transfer matrices

(largest eigenvalues)

Next

The crucial YBE in more detail
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Commuting transfer matrices

These two relations ensure commutativity , see above

Shorthand notation

λ, µ are the spectral
parameters of the
transfer matrices

(largest eigenvalues)

Next

The crucial YBE in more detail
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Solving YBE (for the six vertex model)

R(z) =
1

zq − z−1q−1




zq−1 − z−1q 0 0 0
0 z−1(q−1 − q) z − z−1 0
0 z − z−1 z(q−1 − q) 0
0 0 0 zq−1 − z−1q




z = exp(−λ), q = exp(θ)

R = lim
z→0

R(z)

R =




q2 0 0 0
0 q2 − 1 q 0
0 q 0 0
0 0 0 q2




I The above is a solution for the YBE

I The matrix R is what one often sees in quantum groups λ =∞ limit

I I will now explain where this solution comes from

Note that R is not a

solution to the YBE in general (since λ =∞)

but only satisfies the braid relations :

R12R23R12 = R23R12R23

With general parameters we want R12(z)R23(yz)R12(y) = R23(y)R12(yz)R23(z)

R(z) is a solution for the six vertex model

↑↑ ↑↓ ↓↑ ↓↓
↑↑ zq−1 − z−1q 0 0 0

↑↓ 0 z−1(q−1 − q) z − z−1 0

↓↑ 0 z − z−1 z(q−1 − q) 0

↓↓ 0 0 0 zq−1 − z−1q
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How to discover quantum sl2

I The standard module V = L(1) of Uq(sl2) = 〈E ,F ,K 〉 has basis vectors ↑, ↓
I With respect to this basis

E =

(
0 1
0 0

)
,F =

(
0 0
1 0

)
,K =

(
q 0
0 q−1

)
! qH

I Uq(sl2) has one simple module L(n) per n ∈ N
I For n = 4 this module is

E 7→




0 [1] 0 0
0 0 [2] 0
0 0 0 [3]
0 0 0 0


 ,F 7→




0 0 0 0
[3] 0 0 0
0 [2] 0 0
0 0 [1] 0


 ,K 7→




q3 0 0 0
0 q 0 0
0 0 q−1 0
0 0 0 q−3




I The category of finite dimensional Uq(sl2)-modules is semisimple

Before you ask:
my ground field is C

Before you ask:
my ground field is C(q)
for q a formal variable

[n] = qn−1 + qn−3 + ... + q−n+3 + q−n+1

Stop!

You used the coproduct here:
∆(K) = K ⊗ K , ∆(E) = E ⊗ K + 1⊗ E and ∆(F ) = F ⊗ 1 + K−1 ⊗ F

Where does that come from?

I do not know!

Drinfel’d and Jimbo might say: “It makes Uq(sl2)
a Hopf algebra and there are not many options to achieve that”

But that is an “in hindsight” interpretation, e.g. Faddeev writes:

Faddeev’s school invented Uq(sl2) without knowing Hopf algebras!

The comultiplication is the point!

But they are not equivalent as monoidal categories!

Idea

In order to have a spectral parameter
we need a quantum group with one two-dimensional module

Lz for z ∈ C \ {0}

The affine quantum Lie algebra Uq(ŝl2) almost does the job!

Uq(ŝl2) can be constructed as a central extension of sl2 ⊗ C[t, t−1]
and X ⊗ tk acts on v ∈ V as zkX � v

U ′q(ŝl2) = subalgebra supported on classical weights
The R-matrix is then in EndU′q(ŝl2)(Lz ⊗ Lz)

After some nontrivial algebra:

ZS ∼ chLΛ0

∞
0 1

LΛ0 ! vector representation of Uq(ŝl2)

ZS ∼ chLΛ0 ∼
∑

a∈2Z
qa

2/2∏∞
n=1(1−q2n)

q is a function in T

This was the first instance of
“Characters of simple modules of

quantum affine Lie algebras
turn up everywhere”

What came next?

If you understand sl2, then you should try g!

Initiated by Drinfel’d + Jimbo ∼1985+
and still very much in construction
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How to discover quantum sl2

I V ⊗ V = C(q){↑↑, ↑↓, ↓↑, ↓↓} (taken in this order); with respect to this basis

E 7→
(

0 1 q 0

0 0 0 q−1

0 0 0 1
0 0 0 0

)
,F 7→

(
0 0 0 0

q−1 0 0 0
1 0 0 0
0 1 q 0

)
,K 7→

(
q2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 q−2

)

I The six vertex model gives

R =

( ∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 ∗

)

I Since it should commute with E and F it (up to scalars) has to be of the form

R =



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

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ZS ∼ chLΛ0 ∼
∑

a∈2Z
qa

2/2∏∞
n=1(1−q2n)

q is a function in T

This was the first instance of
“Characters of simple modules of

quantum affine Lie algebras
turn up everywhere”

What came next?

If you understand sl2, then you should try g!

Initiated by Drinfel’d + Jimbo ∼1985+
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There is still much to do...

Thanks for your attention!
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Statistical mechanics in a nutshell

I Statistical mechanics is a branch of physics that pervades all other branches

I Its exact incarnation is different in each quadrant, but the basics are identical

I Instead of microstates σ describe a set Ω of microstates, the macrostates

I will now motivate the whole story of statistical mechanics
in general, although we will not use some of the involved notions

Warning

V and N are replaced by different
quantities in different situations

T=Temperature , k=Boltzmann constant (for normalizing units)
exp(−Eσ/kT ) = Boltzmann weight

Enter, the partition function

ZS has many amazing properties. For one, it can be used to write an
endless number of clever identities

Example Expected energy 〈E〉 = U = −∂/∂β logZS

Example Entropy SS = k(1− β∂/∂β) logZS

Solving the model = finding a good expression of ZS

Warning

The details depend on the model
and the precise setting might vary!

Warning

I ignore boundary conditions until later

In any case, let us
jump into one of them:

the vertex model (proposed by Pauling ∼1935)
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The ice-type vertex model

I This models ice lattices and other real crystals with hydrogen bonds

I Lieb found an exact solution for Z2 ∼1967; Z3 is still open

Warning

Strictly speaking there are a few variants
like a six-vertex model, allowing only six local orientation configurations, e.g.

We will come back to this 6-vertex version later

Warning

Actually hexagonal lattices would be better
but they are harder so lets ignore them

Most common ice lattice:

The tool we need to compute ZX

are transfer matrices
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Transfer matrices

X = • • •a b c d

ZX =
∑

a,b,c,d

R(a, b)R(b, c)R(c , d)

R =




0 R(a, b) 0 0
R(a, b) 0 R(b, c) 0

0 R(b, c) 0 R(c , d)
0 0 R(c , d) 0


 , T =

∑

a,b,c,d

R

a− d entry of R3 is R(a, b)R(b, c)R(c , d)

I Toy-model: ice-type for Z with fixed boundary

I Slogan Summation over indices in ZX becomes the summation over indices in

matrix multiplication

I The boundary entry of RN encodes the partition function

Upshot

Use linear algebra to understand ZX

and study the asymptotic behavior of RN

Keyword: Largest eigenvalue

Perron–Frobenius theorem (Perron ∼1907, Frobenius ∼1912)
(Note quite relevant for the vertex model, but still cool)

Irreducible matrices with entries from R≥0

have an eigenvalue pf ∈ R≥0 and

an associated eigenvector ~pf ∈ Rn
≥0

The growth rate of RN is roughly given by pf N
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Commuting transfer matrices

I Idea (Baxter ∼1975) Use only commuting transfer matrices

I Upshot Have a common eigenvector and, using it, are relatively easy to study

Shorthand notation

λ, µ are the spectral
parameters of the
transfer matrices

(largest eigenvalues)

Next

The crucial YBE in more detail
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Commuting transfer matrices

I First Invertibility

I Second Yang–Baxter equation (YBE)

Shorthand notation

λ, µ are the spectral
parameters of the
transfer matrices

(largest eigenvalues)

Next

The crucial YBE in more detail
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Commuting transfer matrices

These two relations ensure commutativity , see above

Shorthand notation

λ, µ are the spectral
parameters of the
transfer matrices

(largest eigenvalues)

Next

The crucial YBE in more detail
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Solving YBE (for the six vertex model)

R(z) =
1

zq − z−1q−1




zq−1 − z−1q 0 0 0
0 z−1(q−1 − q) z − z−1 0
0 z − z−1 z(q−1 − q) 0
0 0 0 zq−1 − z−1q




z = exp(−λ), q = exp(θ)

R = lim
z→0

R(z)

R =




q2 0 0 0
0 q2 − 1 q 0
0 q 0 0
0 0 0 q2




I The above is a solution for the YBE

I The matrix R is what one often sees in quantum groups λ =∞ limit

I I will now explain where this solution comes from

Note that R is not a

solution to the YBE in general (since λ =∞)

but only satisfies the braid relations :

R12R23R12 = R23R12R23

With general parameters we want R12(z)R23(yz)R12(y) = R23(y)R12(yz)R23(z)

R(z) is a solution for the six vertex model

↑↑ ↑↓ ↓↑ ↓↓
↑↑ zq−1 − z−1q 0 0 0

↑↓ 0 z−1(q−1 − q) z − z−1 0

↓↑ 0 z − z−1 z(q−1 − q) 0

↓↓ 0 0 0 zq−1 − z−1q
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How to discover quantum sl2

I The standard module V = L(1) of Uq(sl2) = 〈E ,F ,K 〉 has basis vectors ↑, ↓
I With respect to this basis

E =

(
0 1
0 0

)
,F =

(
0 0
1 0

)
,K =

(
q 0
0 q−1

)
! qH

I Uq(sl2) has one simple module L(n) per n ∈ N
I For n = 4 this module is

E 7→




0 [1] 0 0
0 0 [2] 0
0 0 0 [3]
0 0 0 0


 ,F 7→




0 0 0 0
[3] 0 0 0
0 [2] 0 0
0 0 [1] 0


 ,K 7→




q3 0 0 0
0 q 0 0
0 0 q−1 0
0 0 0 q−3




I The category of finite dimensional Uq(sl2)-modules is semisimple

Before you ask:
my ground field is C

Before you ask:
my ground field is C(q)
for q a formal variable

[n] = qn−1 + qn−3 + ... + q−n+3 + q−n+1

Stop!

You used the coproduct here:
∆(K) = K ⊗ K , ∆(E) = E ⊗ K + 1⊗ E and ∆(F ) = F ⊗ 1 + K−1 ⊗ F

Where does that come from?

I do not know!

Drinfel’d and Jimbo might say: “It makes Uq(sl2)
a Hopf algebra and there are not many options to achieve that”

But that is an “in hindsight” interpretation, e.g. Faddeev writes:

Faddeev’s school invented Uq(sl2) without knowing Hopf algebras!

The comultiplication is the point!

But they are not equivalent as monoidal categories!

Idea

In order to have a spectral parameter
we need a quantum group with one two-dimensional module

Lz for z ∈ C \ {0}

The affine quantum Lie algebra Uq(ŝl2) almost does the job!

Uq(ŝl2) can be constructed as a central extension of sl2 ⊗ C[t, t−1]
and X ⊗ tk acts on v ∈ V as zkX � v

U ′q(ŝl2) = subalgebra supported on classical weights
The R-matrix is then in EndU′q(ŝl2)(Lz ⊗ Lz)

After some nontrivial algebra:

ZS ∼ chLΛ0

∞
0 1

LΛ0 ! vector representation of Uq(ŝl2)

ZS ∼ chLΛ0 ∼
∑

a∈2Z
qa

2/2∏∞
n=1(1−q2n)

q is a function in T

This was the first instance of
“Characters of simple modules of

quantum affine Lie algebras
turn up everywhere”

What came next?

If you understand sl2, then you should try g!

Initiated by Drinfel’d + Jimbo ∼1985+
and still very much in construction
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How to discover quantum sl2

I V ⊗ V = C(q){↑↑, ↑↓, ↓↑, ↓↓} (taken in this order); with respect to this basis

E 7→
(

0 1 q 0

0 0 0 q−1

0 0 0 1
0 0 0 0

)
,F 7→

(
0 0 0 0

q−1 0 0 0
1 0 0 0
0 1 q 0

)
,K 7→

(
q2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 q−2

)

I The six vertex model gives

R =

( ∗ 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 ∗

)

I Since it should commute with E and F it (up to scalars) has to be of the form

R =




q2 0 0 0
0 q2 − q3b q2b 0
0 q2b q2 − qb 0
0 0 0 q2




I b = q−1 is the solution from before! (Not quite – I messed up conventions

along the way!)

Before you ask:
my ground field is C

Before you ask:
my ground field is C(q)
for q a formal variable

[n] = qn−1 + qn−3 + ... + q−n+3 + q−n+1

Stop!

You used the coproduct here:
∆(K) = K ⊗ K , ∆(E) = E ⊗ K + 1⊗ E and ∆(F ) = F ⊗ 1 + K−1 ⊗ F

Where does that come from?

I do not know!

Drinfel’d and Jimbo might say: “It makes Uq(sl2)
a Hopf algebra and there are not many options to achieve that”

But that is an “in hindsight” interpretation, e.g. Faddeev writes:

Faddeev’s school invented Uq(sl2) without knowing Hopf algebras!

The comultiplication is the point!

But they are not equivalent as monoidal categories!

Idea
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Lz for z ∈ C \ {0}
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Uq(ŝl2) can be constructed as a central extension of sl2 ⊗ C[t, t−1]
and X ⊗ tk acts on v ∈ V as zkX � v

U ′q(ŝl2) = subalgebra supported on classical weights
The R-matrix is then in EndU′q(ŝl2)(Lz ⊗ Lz)

After some nontrivial algebra:

ZS ∼ chLΛ0

∞
0 1

LΛ0 ! vector representation of Uq(ŝl2)

ZS ∼ chLΛ0 ∼
∑

a∈2Z
qa

2/2∏∞
n=1(1−q2n)

q is a function in T

This was the first instance of
“Characters of simple modules of

quantum affine Lie algebras
turn up everywhere”

What came next?

If you understand sl2, then you should try g!

Initiated by Drinfel’d + Jimbo ∼1985+
and still very much in construction
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There is still much to do...

Thanks for your attention!
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