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@ Tangle diagrams of %;-orbifold tangles
@ Diagrams
@ Tangles in %/z-orbifolds

© Topology of Artin braid groups
@ The Artin braid groups: algebra
@ Hyperplanes vs. configuration spaces

© Invariants
@ Reshetikhin—Turaev-like theory for some coideals
@ Polynomials and homologies for Z4z-orbifold tangles
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Tangle diagrams with cone strands

Let cTan be the monoidal category defined as follows.

Generators. Object generators {4, —, c}, morphism generators

usual crossings usual cups and caps cone crossings

Relations. , and the Z/yz-relations:

Daniel Tubbenhauer Link invariants and Z/zz-orbifolds January 2018 4/14



Tangle diagrams with cone strands

Examples.
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Tangle diagrams with cone strands

Let cTan be the monoidal category defined as follows.

Example.

Generators. Object generatot 'S' n generators

+ o+ o+ o+
&/A A\f NPARN Q
3 b )
NN ’
Exercise. The relations are actually equivalent. <"

usual crossings
Relations. , and the Z/yz-relations:
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Z/Qz—orbifblds

“Definition”. An is locally modeled on the standard Euclidean space
modulo an action of some finite group.

Main example. %/ acts on R? by rotation by 7 around a fixed point c:

2 R2
R [2=—z

2 ~
c10rb:R/ZQZ ?T ~ Xeorb X @

c

/o, action cone point

Philosophy. c is half-way in between a regular point and a puncture:

regular cone puncture
R2 R? R2
. ox c ok X ok
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Z/Qz—orbifOIdS

“Definition”. An

is locally modeled on the standard Euclidean space
modulo an action of some finite group.

Main example. %4y actg

c10rb =

If we draw tangles in c10rbx [0, 1], then:
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Philosophy. c is half-way in between a regular point and a puncture:
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Pioneers of algebra

Let [ be a

Artin ~1925, Tits ~1961-+. The Artin braid groups and its Coxeter group
quotients are given by generators-relations:

Aarr = <5,. | - bbb = ...5j5i5j>
J mj; factors mj; factors

_ 2 _ _
Wr=(si| st =1,---sisjsi = - - 5jsisj)
———  ~—
mj; factors mj; factors

Artin braid groups generalize classical braid groups, Coxeter groups Weyl groups.

We want to understand these better.
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| follow hyperplanes

W,, = (s, ) acts faithfully on R? by reflecting in hyperplanes (for each reflection):

W,, acts freely on M, = R?\ hyperplanes. Set N, =M, /W, .
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| follow hyperplanes

W,, = (s, ) acts faithfully on R? by reflecting in hyperplanes (for each reflection):

Coxeter ~1934, Tits ~1961. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)

W,, acts freely on M, = R?\ hyperplanes. Set N, =M, /W, .
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| follow hyperplanes

W,, = (s, ) acts faithfully on R? by reflecting in hyperplanes (for each reflection):

b
Brieskorn ~1971, van der Lek ~1983. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)

W,, acts freely on M, = R?\ hyperplanes. Set N, =M, /W, .

. L TR2 2 C C )
Complexifying the action: R* ~» C*, My, ~ MA2, Ny, ~ NAz. Then:

m(Ny ) = Ar,, = (6.6 | 6.6,6. = b,6.6,)
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.
Example. Take Conf, = (R?)*\ fat diagonal/y. . Then m(Confy ) = ar, .

Philosophy. Having a configuration spaces is the same as having braid diagrams:

R2 Y1 Y2 y3

o=(13) /w

iy

time

a usual braid

Crucial. Note that — by explicitly calculating the — one can
directly check that:

“Hyperplane picture equals configuration space picture.”

Daniel Tubbenhauer Link invariants and Z/zz-orbifolds January 2018 8/14



Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.

Telee A ( (R2)3 \ fat+ dinannal/ L\
Example. T Lambropoulon ~1993. tom Dieck ~ 1098, Allcock <2002, = Ary,-
Type | A |A]lB=¢c]| B | ¢ |[D| D
. Orbifold feature H none { X { X { X, C { X, X { c { c,c .
PhllOSOphy. Additional inside: Works for tangles as well. d dlagrams:
In those cases one can compute the hyperplanes!
This is very special for (affine) types ABCD.
YRR B G
yi Y2 3
a usual braid
Crucial. Note that — by explicitly calculating the — one can
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.

Hope.
The same works for Coxeter diagrams which are “locally type ABCD", e.g.:
Example. ar, .
~ ~ ~ 2
Philosoph diagrams:
x + + ¢ + ¢ + X+ X+ + ¢
A 4 _u g~ )
by — \ b - B — F by —> )
| | \ \ \
a usual braid
|But we can’t compute the hyperplanes... |
Crucial. Note that — by explicitly calculating the — one can

directly check that:

“Hyperplane picture equals configuration space picture.”
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.

Hope.
The same works for Coxeter diagrams which are “locally type ABCD", e.g.:
Example. ar, .
~ ~ ~ 2
Bs o Pa g D4.03,D4 o5
bx . b+ & 4 P4 by
@ IS . w » o S o
Philosoph diagrams:
o 1] ® 6.
S
by > be = r' by )
N\
a usual braid

In words: The Z4z-orbifolds provide the
Crucial. framework to study Artin braid groups of classical (affine) type- one can
directly ¢ and their “glued-generalizations” .

“Hyperplane picture equals configuration space picture.”
Daniel Tubbenhauer
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

U
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

C(v) = ground field,
V, = vector representation
of U, = U(sl2).

Vy ® V.
r T et
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

R Wemanen
Tid ® id ® ev*
Vy @ Vy
Pev*
C(v)
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?
C(v)

?7: Vy — Vy should be non-trivial.
But Vy is irreducible for u,...7

Vv ®@Vy @Vy @Vy
?7? — P77 ®id®id®id
Vv®Vv®Vv®Vv
1id ® id ® ev*
Vv®Vv
C(V)
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

1§ Ty @ Vy ® Vv @ Vy
Tid ® R ® id
Vy @ Vy @ Vy @ Vy
177 ®id ® id ® id
Vy @ Vy @ Vy @ Vy
Tid ® id ® ev*
Vy @ Vy
Pev*

C(v)
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

1§ Vv @ Vy ® Vv @ Vy
Tid® R ® id
Ty @ Vy ® Vv @ Vy
Tid ® R ® id
Vy @ Vy @ Vy @ Vy
?? 177 ®id ® id ® id
Vy @ Vy @ Vy @ Vy
Tid ® id ® ev*
Vy @ Vy
Pev*

C(v)

Daniel Tubbenhauer Link invariants and Z/zz-orbifolds January 2018 9/14



Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

Same issue...

Uy @ Vy @ Vy @ Vy
?7? 17 ®id®id ®id
Vv @ Vy ® Vv @ Vy
Tid® R ® id
Ty @Vy @ Vy @ Vy
Tid ® R ® id
Vv ®@Vy @Vy @Vy
?? 177 ®id ® id ® id
Vv @Vy @ Vy @ Vy
Tid ® id ® ev*
Vy @ Vy
Pev*

C(v)
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

Vy @ Vy
Tid ® id ® ev
Vv @ Vy ® Uy @ Vy
?7? 17 ®id®id ®id
Vv @ Vy ® Vv @ Vy
Tid® R ® id

Ty @ Vy ® Vv @ Vy
Tid ® R ® id

Uy @Vy ® Vy @ Vy

177 ®id ® id ® id
Vy @ Vy @ Vy @ Vy
Tid ® id ® ev*
8 Vy © Vg
Tev

C(v)

7
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)
TEV
Vy ® Vy
Tid ® id ® ev
Vv @ Vy ® Uy @ Vy
?7? 17 ®id®id ®id
Vv @ Vy ® Vv @ Vy
Tid® R ® id

Ty @ Vy ® Vv @ Vy
Tid ® R ® id

Uy @Vy ® Vy @ Vy

177 ®id ® id ® id
Vy @ Vy @ Vy @ Vy
Tid ® id ® ev*
8 Vy © Vg
Tev

C(v)

7
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?
Orbifold-philosophy. We need something half-way in between C(v) and .

C(v)
TEV
Vv ® Uy
Tid ® id ® ev

Uy @ Vy @ Vy @ Vy
?7? 17 ®id®id ®id
Uy @ Vy @ Vy @ Vy
Tid® R ® id
Ty @Vy @ Vy @ Vy
Tid ® R ® id

Uy @Vy ® Vy @ Vy

177 ®id ® id ® id
Vy @ Vy @ Vy @ Vy
Tid ® id ® ev*
Q Vy © Vg
Tev

C(v)

7
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated
by E,F,K*! subject to the usual relations.

EV+ = 07

Ev_ = v,

v -

Define ,-intertwiners:

Vi C(v) =V, @V,

Not really important...

Fvp =v_, Kvy=vwvy,

Fv_ =0, Kv_ =v lv_.

— 0
V@V, — (), {v+®V+ )

Vo Q@ vy = —v,

X:VV®VV_>VV®VV7 K:V||+V2X~

Daniel Tubbenhauer

Link invariants and %/, -orbifolds

l=ve®@vy —vo

1
Vi ® v,

Vi @vo =1,
Ve ® v_ — 0,
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! subject to the usual relations.

EV+ = 07 FV+ =Vv_, KV+ =VVvy, K~y ! K~sv
Vy: 1 L. O
Ev_ =vy, Fv_ =0, Kv_ =v ‘v_. v_ 4’? Vi

Fact. U, is a Hopf algebra = We can tensor representations.
Define ,-intertwiners:

ViCW) = V@V, 1= ve@v —viivy v,

Yy ® Vs — C(v) vy ® vy — 0, Vi @ ve = 1
oo ! ’ Vo Q@ vy = —v, Vo ®v_ — 0,

Xin®Vv—>Vv®Vw K:V||+V2X~
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! subject to the usual relations.

EV+ = 07 FV+ =Vv_, KV+ =VVvy, K~y !

Vy: _ QL

_ F
Ev_.=vy, Fv.=0, Kv.=v ‘v_. v £ vy

Deﬁ“" Pe & BN A S-SR,

Example. (Ao ¥ )(1)= A(v-®vy)—v i aA(vy®@v.)=—-v—v L

ViCv) =2 VeV, 1l vo®ve—v vy ®v.,

Yy ® Vs — C(v) vy ® vy — 0, Vi @ ve = 1
oo ! ’ Vo Q@ vy = —v, Vo ®v_ — 0,

KV, @V, =V, 0V, Y =vll+v?X
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! § Example. We can not see the cone strands.

vl N

Define U,-in

C(v)
................... Vy ® Vy
................. Vy @ Vy @ Vy ® Vy
................. Vy @ Vy @ Vy ® Vy

T
................. Vy @ Vy @ Vy @ Vy

T
................. Vy @ Vy @ Vy @ Vy

Vy @ Vy @ Vy ® Vy

................. Vy ® Vy

C(v)

n

NI

[T
| A
| A
[T

(i

v

K~>v

Vi

ATV QV, =V, ® Vg,

A=VI[T+FV R

Daniel Tubbenhauer Link invariants and Z/zz-orbifolds

January 2018 10 / 14



Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! §

Vy:

Define y-i"

Daniel Tubbenhauer

Up to scalars
o choice for

C(v)
................... Vy ® Vy

Uy QVy @ Vy ® Vy

Ty QVy @ Vy ® Vy
T

----------------- Ty QVy ® Vy ® Vy
T

................. Vy @ Vy @ Vy @ Vy

Vy @ Vy @ Vy ® Vy

Vy ® Vy

C(v)

Example. We can not see the cone strands.

n

NI

[T
| A
| A
[T

(i

v

K~>v

Vi

ATV QV, =V, ® Vg,

A=VI[T+FV R

Link invariants and Z/zz-orbifolds

January 2018 10 / 14



Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.
B
Vy: Bvp =v_, Bv_ =v,. vo S5 vy

Define c,-intertwiners:
VoV, vie v, ve vy
YoC(v) > V@V, 1=vi®vy—v iv®v.,

Vi Q@vy = —v, vyRv_ =0,

(V, @V, — C(v),
a (v) {v_®v+l—>0, Ve Q@ v — 1,

A=1=NX ad K =|=NX.
Aside. This drops out of a of Schur-Weyl duality.
Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.
B
Vy: Bvp =v_, Bv_ =v,. vo S5 vy

Define cUy-intertv Qbservation. These are not 7l-equivariant,
but ~ and .~ are c,-equivariant.
YoC(v) > V@V, 1=vi®vy—v iv®v.,
Vi Q@vy = —v, vyRv_ =0,

A:VV®VV—>C(V),
Ve ® vy — 0, Ve Q@ v — 1,

A=1=NX ad K =|=NX.
Aside. This drops out of a of Schur-Weyl duality.
Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.

B
Vy: Bvy =v_, Bv_ =v;. V_ 4><B* Vi

Define ctExample. (40 ¥)(1) = a(v-®@vy) —v ia(vy ®vo)=0

tot=|butt#]

YIOV) S Ve @V, L vy ®ve—v ve®ve,

— — _—0
AV @V, = C(v), {V+®V+ vl

Ve ® vy — 0, Ve Q@ v — 1,

Z=1t=X ad K =|=X.

Aside. This drops out of a of Schur-Weyl duality.

Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.

Example. We can see the cone strands.

C(v)

)
........................................... Vy @ Vy

(NN

.............. e Ty RV @ Vy @ Vy | | | |

\
........................ ) I S bl
T | A |

......................................... Uy @ Vy @ Vy @ Vy

Deflne CrZ’IV_I ......................................... Uy @Vy @ Vy @ Vy

Vy @ Vy @ Vy @ Vy +||| ’
| | A I.’
Vy ® Vy
A
C(v)
Aside. This drops out of a of Schur-Weyl duality.
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.

Example. We can see the cone strands.

C(v)

)
........................................... Vy @ Vy

(NN

.............. e Ty RV @ Vy @ Vy | | | |

We have now 1 |X|
+|||;£|||| """"""""""""" ) ----------- vv®vv%vv®w .
| A1

1

Deflne CrZ’IV_I ......................................... Uy @Vy @ Vy @ Vy

......................................... Uy @ Vy @ Vy @ Vy

Vy @ Vy @ Vy @ Vy
| | A I.’
Vy ® Vy
A
C(v)
Aside. This drops out of a of Schur-Weyl duality.
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.

B

Hope.

The same works for

Define c

But what is the replacement of c, outside of classical or affine classical type?
| + 5 = = 7

\/‘—J.—\’ and vV —1— .
|(Affine) ABCD are again very special. |

Aside. This drops out of a of Schur-Weyl duality.

Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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Back to diagrams

Let mA4rc be the monoidal category defined as follows.

Generators. Object generator {o}, morphism generators

U \V/ _I_

o cups and caps m cups and caps markers

Relations. “Coideal” relations:
A technicality: g = —v. O =q-+ q_l , O =0= Q

o circle removal m circle removals
-1 U-U-Y o A= -1
marker removal marker isotopies
Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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Back to diagrams

Let m4rc be the monoidal category defined as follows.

Generators. Object gene

o o

U

o cup

Relations. “Coideal” rela

q

Examples.

=(qa+q')?

U0

But in contrast:

U0

s

o

f

o

markers

Q

s

U

marker removal

Daniel Tubbenhauer

&

marker isotopies

Link invariants and Z/zz-orbifolds

Umn-A-n

January 2018
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A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

(F)e=0 , (=)e=0 , (). =@

and on morphisms by
The skein relations.

() ol 1% () oo |

0-reso. 1-reso. 0-reso. 1-reso.

(A) S (R

adds a marker

()N (R) -/

does not add a marker

Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

(t)e=0 , (=)e=0 , (). =9

and on morphisms by
The skein relations.

(Rl e R (R R

0-reso. 1-reso. 0-reso. 1-reso.

The %/y;-skein relations.

()= (X

adds a marker

()N (R

does not add a marker

Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

<+>c =0 <7>c =0 <C>c =0
and on morphisms by
Theorem. This is a Z/z-tangle invariant.

<%>C_q Proo. Check reations, e [ + |
&) -0
3 <<

\ N/ o

does not add a marker

~

Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

(He=0 , ()e=0 , () =9

Example. Here the Hopf link.

.
( qz DR D
“/; e
—

2 v 12 3 M 1 4 v 12
(h)e= a“(a+a ) - 2q°(q+q" ") +  d'(a+q77)

does not add a marker
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A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

(He=0 , ()e=0 , () =9

Example. Here the essential Hopf link.
: >
q4

D) (s )
/\ cube 1
I &_) -
. ~ -
(ehi) o = ?@+q7hH? - 23 +4q7 ) + 0

does not add a marker
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A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

(He=0 , ()e=0 , () =9

Example. Here the essential Hopf link.

- s
heds Q5 ¢

Hence, they are dlfFerent 7

b

\',
(ehi) o = Pa@+a™hH? - 23 +4q7 ) + 0

does not add a marker

Daniel Tubbenhauer Link invariants and Z/zz-orbifolds January 2018 13 /14



A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

and on

<_

A homological invariant a la Khovanov & Bar-Natan.
Works mutatis mutandis. Here is the picture:

cone crossings

< @Q;\Ql/) N
/ /l . : >qf‘.)..'(‘f*$_$tq g

usual crossings

ZXl yay, if m is even
z _ (X?)» )
" <@> {07 if m is odd,

does not add a marker
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A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

and on

A homological invariant a la Khovanov & Bar-Natan.
Works mutatis mutandis. Here is the picture:

cone crossings

’k’l‘ T/ .

In case of type ABCD \ K

O th|s comes from a categorification of the eso.
-

Schur-Weyl-coideal duality.
”Web and arc algebras of type D".) S tq2 !

SN

usual crossings

ZXl yay, if m is even
z _ (X?)» )
! (GD) 0, if mis odd,

T T T

does not add a marker

Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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A polynomial invariant a la Jones & Kauffman

We define a monoidal functor (_)_: cTan — mArc as follows. On objects,

[

(F)e=0 , (=)e=0 , (). =@

and on morphisms by
3R) el 1R (X)) - rR

A homological invariant a la Khovanov & Rozansky.
Everything generalizes to higher ranks.
(“Webs", “foams”, etc.)

\r N/, \ A VI §

adds a marker

()N (R

does not add a marker

Daniel Tubbenhauer Link invariants and %/, -orbifolds January 2018
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Configuration spaces

Atin ~1925. Ther i  topcsegical mde of 1, ia confgurston spoces.

Example. TskeConf, ~ ()" ft digonsl, - Then m(Conty ) = i,

Philosophy. Having 3 configuration spaces s the same s hving brid diagrams:

Tangle diagrams with cone strands

Let can be the monidal ctegory deined 3 allons.

Generators. Oec geneat

KK

Relatons, CEESEEIED, s0d te -reltons:
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Configuration spaces

A
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invariant a la Jones & Kauffman

A polynomi

W define 3 mancidsl functr (), <Tan > e 8 fllows. On abjcts,

Example. Here T essentl HoaT Tk
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Crucial. Note thit — by explcily calultng R _ o can

ety check tat
Hyparptane picture cqulsconfuration spc pictre
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A version o Schur'sremarabie duaity.

o) V3V O ()

euoh) (D)

a
ERvig-Stroppel, Bao-Wang ~2013. The sctions of <2 (o) nd 4(D)¥:

o0 V4 commute and geerae cachathr's centalizer

There is still much to do...

Link invariants and Z/zz-arhifolds

1 follow hyperplanes

Wy, = 1) acts ity on B2 by reictin in hypsplnes(foresch refection):

Wy, acs ey o My, = R\ byperplans. St 1,
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S — JR——

Configuration spaces

Atin ~1925. Ther i  topcsegical mde of 1, ia confgurston spoces.

Example. TskeConf, ~ ()" ft digonsl, - Then m(Conty ) = i,

Philosophy. Having 3 configuration spaces s the same s hving brid diagrams:

Tangle diagrams with cone strands

Let can be the monidal ctegory deined 3 allons.

w1 8 e

Relatons, CEESEEIED, s0d te -reltons:

S [——— J——

Configuration spaces

Atin ~1925. Ther i »topcsogial mde of 1, ia confgurston spaces.

— R ——

Phioso Jaagrams:

SRR CER Y]

. Note that — by explcly calulting the CESESTEEEIERERED - one can
ety check tat

Hyparptane picture cqulsconfuratio spc pictre

A polynos

ariant a la Jones & Kauffman

W define 3 mancidsl functr (), <Tan > e 8 fllows. On abjcts,

Example. Here T essentl HoaT Tk

Thanks for your attention!

Daniel Tubbenhauer

Coulal. Nos tht by xplctly i the CEESTERIIEED _ cne a0
Gty ekt

Hyparptane picture cqulsconfuration spc pictre

A version o Schur'sremarabie duaity.

o) V3V O ()

cufel) Yoo,

(D)

a
ERvig-Stroppel, Bao-Wang ~2013. The sctions of <2 (o) nd 4(D)¥:

o0 V4 commute and geerae cachathr's centalizer

Link invariants and Z/zz-arhifolds

1 follow hyperplanes

Wy, = 1) acts ity on B2 by reictin in hypsplnes(foresch refection):

Wy, acs ey o M, = ¥\ byperplans. St iy, =

Complesitying the sction: B2 — b,

B =y, — (6.6 866 665

S [——— JR——

Half-way in between trivial C ?? C @, — part Il

Let <ol be the @D subslgers o t,generted by B = v 5K 1+ F

Eampte, We a1 e e cone sand

Aside. Thisdrop ou of 2 GRS of Schur-Weg dulty

3

S— N S—_—

A polynomial invariant a la Jones & Kauffman

W define 3 mancidsl functr (), <Tan > e 8 fllows. On abjcts,

A omelogical mvariant 3 o Kovanov & Bar Ratan.
andon] Werks mutats mutand. Here 1 te picture:

{

B NI
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| see them as diagrams — no topologlcal |nterpretat|on intended at the moment.



Satake ~1956 (“V-manifold”), Thurston ~1978, Haefliger ~1990
(“orbihedron”), etc. A triple Orb = (Xg., U;U;, G;) of a Hausdorff space Xgp, a
covering U;U; of it (closed under finite intersections) and a collection of finite
groups G; is called an orbifold (of dimension m) if for each U; there exists a open
subset V; C R™ carrying an action of G;, and some compatibility conditions.

Fact. A two-dimensional (“smooth”) orbifold is locally modeled on:
> Cone points « rotation action of /.
> Reflector corners «~ reflection action of the dihedral group.

> Mirror points «~ reflection action of Z/x.



Satake ~1956 (“V-manifold”), Thurston ~1978, Haefliger ~1990

“or Not super important. Only one thing to stress: 5 a
cove Topologically an orbifold is sometimes the same as its underlying space.:
grou  So all notions concerning orbifolds have to take this into account.  pen
subset V; C R™ carrying an action of G;, and some compatibility conditions.

Fact. A two-dimensional (“smooth”) orbifold is locally modeled on:
> Cone points « rotation action of /.
> Reflector corners «~ reflection action of the dihedral group.

> Mirror points «~ reflection action of Z/x.



Satake ~1956 (“V-manifold”), Thurston ~1978, Haefliger ~1990

“or Not super important. Only one thing to stress: 5 a
cove Topologically an orbifold is sometimes the same as its underlying space.:
grou So all notions concernlng orbifolds have to take this into account pen

'
¢

Quote by Thurston about the name orbifold:

“This terminology should not be blamed on me. It was obtained by
l a democratic process in my course of 1976-77. An orbifold is something
with many folds; unfortunately, the word ‘manifold’ already has
a different definition. | tried ‘foldamani’, which was quickly
displaced by the suggestion of ‘manifolded’. After two months of patiently
saying ‘no, not a manifold, a manifoldead,” we held a vote, and ‘orbifold” won.”



Satake ~1956 (“V-manifold”), Thurston ~1978, Haefliger ~1990
(“orbihedron”), etc. A triple Orb = (Xg., U;U;, G;) of a Hausdorff space Xgp, a
covering U;U; of it (closed under finite intersections) and a collection of finite
groups G; is called an orbifold (of dimension m) if for each U; there exists a open
subset V; C R™ carrying an action of G;, and some compatibility conditions.

Fact. A two-dimensional (“smooth”) orbifold is locally modeled on:
> Cone points « rotation action of /.
> Reflector corners «~ reflection action of the dihedral group.

> Mirror points «~ reflection action of Z/x.



Satake ~1956 (‘
(“orbihedron”), ¢
covering U;U; of it
groups G; is called
subset V; C R™ c3

Fact. A two-dime

> Cone points ¢

[}
é

A Z)z-orbifold tangle
g

Examples.

OO0,

A Z/sz-orbifold tangle

“Puncture = lim;_, oo /-cone point”.

etc.

r ~1990

orff space Xgp, a
ection of finite
here exists a open
y conditions.

l on:

> Reflector corners «~ reflection action of the dihedral group.

> Mirror points «~ reflection action of Z/x.
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Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)


https://en.wikipedia.org/wiki/Coxeter_group
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3
Ar, is the classical braid group in six+1 strands
I
‘WA6 is the symmetric group on six+1 letters

Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
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“Far commutativity”

5,'ﬁj = 5jﬁ,‘, if 6@ ® 5

w,

Deg

!
be..

by

“Reidemeister”

5,'ﬁj5,' = 5j5,'5j, if 5j0—e

is 77?7
ﬂrD6 Is 777

is the Weyl group of type D¢

N

“c-braid relation”

; 66 = 66, if

/
.6/.

o5

Example. The type A family is given by the symmetric groups using the simple

transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
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!
be..

o5
bib; = bjb;, if 6 e X7 bibj6; = bibib;, if 6 e——e 5 66! = 6] b, if
Y

is 77?7
ﬂrD6 Is 777

WD& is the Weyl group of type D¢

Example. The type A family is given by the symmetric groups using the simple
transpositions ¢l want to answer ??? in this case, and partially in general.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
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Figure: The Coxeter graphs of affine type.

Example. The type A, corresponds to the affine Weyl group for sl,,.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
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[ 2 d
ay a
positive root a3 =(1,-1,0) | ap =(0,1,-1) | au+ap =(1,0,-1)
reflection action X1 & X2 X > X3 X1 > X3
L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R*)®|x =y ory =z or x = z}
This is gl-notation.



[ 2 d
ay a
positive root a3 =(1,-1,0) | ap =(0,1,-1) | au+ap =(1,0,-1)
reflection action X1 & X2 X > X3 X1 > X3
L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R*)®|x =y ory =z or x = z}

Observe that this matches the diagonal of the configuration space picture.



positive root a3 =(1,-1,0) | ap =(0,1,-1) | au+ap =(1,0,-1)

reflection action X1 & X2 X > X3 X1 > X3

L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R*)®|x =y ory =z or x = z}

Qi.'», Dy
S,
oy asg
1@
positive root af =(1,1,0) a; = (1,-1,0) | more “type A -like”
reflection action || x],x1 > —xi, —x1 X1 & Xo more “type A -like"
L-hyperplane {(x,—x,0,0)} {(x,x,0,0)} | more “type A -like"

Hyperplane equations: {(x,y,z, w) € C*| x = £y etc.}



positive root a3 =(1,-1,0) | ap =(0,1,-1) | au+ap =(1,0,-1)

reflection action X1 & X2 X > X3 X1 > X3

L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R*)®|x =y ory =z or x = z}

Observe that this matches the diégoﬁal of the configuration space picture

up to a 2-fold covering (x,y, z, w) — (x2,y?, 2%, w?).
1@

positive root oy =(1,1,0) a3 = (1,—1,0) | more “type A -like”
reflection action || x],x1 > —xi, —x1 X1 & Xo more “type A -like"
L-hyperplane {(x,—x,0,0)} {(x,x,0,0)} | more “type A -like"

Hyperplane equations: {(x,y,z, w) € C*| x = £y etc.}



Ay

*—O0
@y a
positive root a3 =(1,-1,0) | ap =(0,1,-1) | au+ap =(1,0,-1)
reflection action X1 < X0 X > X3 X1 > X3
L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R*)®|x =y ory =z or x = z}

Similarly in (affine) types ABCD.

oy asg
ay

positive root af =(1,1,0) a; = (1,-1,0) | more “type A -like”

reflection action || x],x1 > —xi, —x1 X1 & Xo more “type A -like"

L-hyperplane {(x,—x,0,0)} {(x,x,0,0)} | more “type A -like"

Hyperplane equations: {(x,y,z, w) € C*| x = £y etc.}



Noumi—Sugitani ~1994, Letzter ~1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

clUy, is not a Hopf algebra, but rather a right coideal (subalgebra) of «,:

A(B)=B®K '+1®B € cl ® U,
geu,

which gives R ep(cU,) the structure of a right R ep(U,)-category = right
handedness of diagrams, e.g.:

Ps o

Ok from this picture Not ok from this picture



Noumi—Sugitani ~1994, Letzter ~1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

clUy, is not a Hopf algebra, but rather a right coideal (subalgebra) of «,:

Example. The vector representations of gl,,, so, and sp,, all agree, and indeed
so, — gl, and sp, — gl,.

But the quantum vector representations do not agree, i.e.

h Uy(50,) A Us(gl,) and Uy(sp,) A Us(gl,).

=

This is bad. Idea: Invent new quantizations such that
Uy (50n) = Uy(gl,) and Uy(sp,) — Us(gl,)-

g

Ok from this picture Not ok from this picture



Noumi—Sugitani ~1994, Letzter ~1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

clUy, is not a Hopf algebra, but rather a right coideal (subalgebra) of «,:

Example. The vector representations of gl,,, so, and sp,, all agree, and indeed
so, — gl, and sp, — gl,.

But the quantum vector representations do not agree, i.e.
h Uy(50,) A Us(gl,) and Uy(sp,)  Uy(gl,).

=

This is bad. Idea: Invent new quantizations such that
Uy (s0n) — Uy(gl,) and Uy(sp,) — Us(gl,).

o Y

Observation. This happens repeatedly.
\I—/ ;Il

Ok from this picture Not ok from this picture



Noumi—Sugitani ~1994, Letzter ~1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

clUy, is not a Hopf algebra, but rather a right coideal (subalgebra) of «,:

A(B)=B®K ' +1®B€ cly ® Uy,
geu,

which gives : This happens really often. In our case we have basicallyright

handedness «
0 t
gly < sl (t) — (t O)

which does not quantize properly...
| BVARYA AN |
Observation. This happens repeatedly.
\I—/ ;Il

Ok from this picture Not ok from this picture



A version of Schur's remarkable duality.

Plain old sl5: The symmetric group:
Acts by matrices. Acts by permutation.
U (sh) C V1@ - @V O #(A)
—_——
d times

Schur ~1901. The natural actions of 7 (sl2) and #(A)

on V?d = (C?)®9 commute and generate each other’s centralizer.



A version of Schur's remarkable duality.

U(sh)CVi®---®@V1 O 74(A)
I
Vi®--®Vy
N———

d times



A versiom— -t Lot

Weyl group of type D:
."

le duality.

type D

NS
type

Up(sl) C V1 ® - @V O 4(A)
Il

Vi@V

————

N
Hy (D)x %oz,

Ignore the component
group “/z.

d times



A version of Schur's remarkable duality.

Up(sl) C V1 ® - @V O 4(A)

I N
V1®®V1 O.‘]‘[l(D)X]Z/zz
————

d times Acts by signed

permutations.



A version of Schur's remarkable duality.

U (sh) C V1 ®- - @ V1 O 74(A)
U I N
7 CVi®---®VL O (D)«
1 1 1( )><1 /2Z

d times



A version of Schur's remarkable duality.

The antidiagonal embedding: ﬂ1(5[2) CVi®---®V O .’7‘[1(A)

- U I N
gly <= slp, (t) — ( O)
f Ui(glh) C Vi® - @V O 74 (D)%%
—_——
Acts by restriction. d times

Regev ~1983. The actions of ¢ (gl;) and #4(D)x%yz,

on V¥ commute and generate each other’s centralizer.



A version of Schur's remarkable duality.

Uy () C Ve @ - @Vy O H(A)

Jimbo ~1985. The natural actions of U (sl2) and 74 (A)

on V&9 = (C(v)?)®? commute and generate each other’s centralizer.



A version of Schur's remarkable duality.

Uy(sh) C Uy @~ @V, O 2,(A)
Il
VV®®VV
—_———

d times



A version of Schur's remarkable duality.

Uy(sh) OV, @+~ @V, O a(A)
Il N
V,®- @V, [ (D)xZ
. . H (D)3

d times



A version of Schur's remarkable duality.

Uy(slp) C Vy @+ @ Vy O 2, (A)

Il N
Ve @ @V, O 9,(D)x%
—_——
d times Quantizes

nicely.



A version of Schur's remarkable duality.

U(sh) C Ve ® - @V, O 2,(A)
U Il N
7 C Vv ®- - Vv O f]‘[‘,(D)X]Z/QZ
—_——

d times



A version of Schur's remarkable duality.

U(sL)CVy®--- @V, O H,(A)
U Il N

U(gl])) C Ve ® - @ Vy D 7,(D)xZ
(aly) Hy (D)xZfoy,

d times



A version of Schur's remarkable duality.

Uy(shh) C Ve ® -~ @V, O 9(A)
Does not I N
embed.

U(gl])) C Ve ® - @ Vy D 7£,(D)xZ
(aly) Hy (D)xZfoy,

d times



A version of Schur's remarkable duality.

U(sL)CVy®--- @V, O H,(A)
Il N
U, (gl Vi@ @V, O #H(D)x?
(aly) Hy (D)X %y,

No commuting d times
action.



A version of Schur’s remarkable duality.

Uy () C Ve @ - @Vy O H(A)

™ I N
Tm SV, ®--- RV, O j’[‘,(D)X]Z/QZ
—_———
d times



A version of Schur's remarkable duality.

Uy(sL) C Vy @ ®Vy O 34 (A)

Il N
U(aly) V@@ Vy O (D)’
cUy(gly) Hy(D)x %oy,

d times



A version of Schur's remarkable duality.

Uy(sh) C Vy ® -+ @ Vy O g,(A)
5a U I N

subalgebra.
cU, (gl Vy ® - @ Vy O 7, (D)x?
(g 1) ( ) /2Z

d times



A version of Schur's remarkable duality.

Uy(slp) C Vy @+ @ Vy O 2, (A)

U Il N
C(Z’lv(g[l) (} VV ® tte ® Vv O .‘]‘[V(D)NZ/zz
————
Act by d times

restriction.



A version of Schur's remarkable duality.

Uy(sh) C Vy @ -~ @ Vy O 74(A)

U Il N
Cﬂv(g[l) (} VV ® tte ® Vv O }[‘/(D)X]Z/2Z
————
d times

Ehrig—Stroppel, Bao—Wang ~2013. The actions of c,(gl;) and %4 (D)x%kz

on V&9 commute and generate each other’s centralizer.



A version of Schur's remarkable duality.

Uy(sh) C Vy @ -~ @ Vy O 74(A)

L] 1 Ia)
Hope.

The same works for the Coxeter diagrams

[ =T((Bg, Dy, Dy, C3, Dy))

By Dy Dy . Cs3 . Dy o
Y v - e

X + + ¢ 4+ ¢ + X+ X+ o+ o«
W)= X ++ctct X+ x++c+

But, again, only in the special case of type ABCD this is known.




A version of Schur's remarkable duality.

Uy(sh) C Vy @ -~ @ Vy O 74(A)

U Il N
Cﬂv(g[l) \/} VV ® tte ® Vv O }[‘/(D)X]Z/2Z
————
d times

Message to take away. Coideal naturally appear in Schur-Weyl-like games.

And these pull the strings from the background for tangle and link invariants.
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