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Introduction

Let S be the monoidal category of Soergel bimodules for any finite
Coxeter type.

Classification Problem

Classify all graded, simple transitive 2-representations of S up to
equivalence.

WARNING:

• Etingof-Nikshych-Ostrik: If C is semisimple, then

# {simple transitive 2-representations of C} / ' <∞.

• This is not true in general, e.g. C := Tn −mod, where Tn is
the Taft Hopf algebra.

• S is not even abelian, let alone semisimple...
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Introduction

Recall that every simple transitive (graded) 2-representation has an
apex and that the classification problem can be studied per apex.

Prior to our recent results, a complete classification was only known
in the following cases:

• Arbitrary finite Coxeter type and strongly regular apex (e.g.
in Coxeter type An, for all n ≥ 1) [Mazorchuk-Miemietz].

• Coxeter type Bn and arbitrary apex, for n ≤ 4 [Zimmermann,
M-Mazorchuk-Miemietz-Zhang].

• Arbitrary finite Coxeter type and subregular apex
[Kildetoft-M-Mazorchuk-Zimmermann, M-Tubbenhauer].

• Coxeter type I2(n) and arbitrary apex, for all n ≥ 2
[Kildetoft-M-Mazorchuk-Zimmermann, M-Tubbenhauer].
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Coxeter groups, Hecke algebras, Soergel bimodules

Let M = (mij)
n
i ,j=1 ∈ Mat(n,N) be a symmetric matrix such that

mij =

{
1 if i = j ;

≥ 2 if i 6= j .

Definition (Coxeter system)

A Coxeter system (W , S) with Coxeter matrix M is given by a set
S = {s1, . . . , sn} (simple reflections) and a group W with
presentation

〈si ∈ S | i = 1, . . . , n〉/ ((si sj)
mij = e) .

We call n the rank of (W ,S).
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Examples

• The only Coxeter groups of rank 2 are the dihedral groups
(Coxeter type I2(n)):

D2n = 〈s, t | s2 = t2 = e ∧ (st)n = e〉.

The isomorphism with the usual presentation

〈ρ, σ | σ2 = ρn = e ∧ ρσ = σρ−1〉

is given by s 7→ σ and t → σρ.

• The Coxeter group of type An is isomorphic to Sn+1,
generated by the simple transpositions s1, . . . , sn, subject to

mii = 1: (si si )
1 = e ⇔ s2

i = e;

mij = 2: (si sj)
2 = e ⇔ si sj = sjsi if j 6= i ± 1;

mi(i±1) = 3: (si si±1)3 = e ⇔ si si±1si = si±1si si±1.
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Coxeter diagrams of finite type

Weyl type non-Weyl type

An

Bn = Cn
4

Dn

E6

E7

E8

F4
4

G2
6

H3
5

H4
5

I2(n) n
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Hecke algebras

Recall that H = H(W ,S) is a deformation of Z[W ] over Z[v, v−1]:

s2
i = e  s2

i = (v−2 − 1)si + v−2.

Let {bw | w ∈W } be the Kazhdan-Lusztig basis of H and write

bubv =
∑
w∈W

hu,v ,wbw ,

for hu,v ,w ∈ Z[v, v−1].
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The coinvariant algebra R

Definition

Let h∗ := C {αi | i = 1, . . . , n}. The dual geometric representation
of W on h∗ is defined by

si (αj) := αj − 2 cos

(
π

mij

)
αi .

Definition

Let R̃ := Sym(h∗) ∼= C[αi | i = 1, . . . , n]. We define a Z-grading on
R̃ by deg(h∗) = 2 and the W -action on h∗ extends to a W -action
on R̃ by degree-preserving algebra-automorphisms. The coinvariant
algebra is R := R̃/(R̃W

+ ).
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Soergel bimodules

For every i = 1, . . . , n, define the R − R bimodule

Bsi := R ⊗Rsi R〈1〉.

Definition (Soergel)

Let S be the additive closure in R − bimodfggr − R of the full,
additive, graded, monoidal subcategory generated by Bsi 〈t〉, for
i = 1, . . . , n and t ∈ Z.

Remark: S is not abelian, e.g. the kernel of

Bsi = R ⊗Rsi R
a⊗b 7→ ab−−−−−−→ R

is isomorphic to R as a right R-module but the left R-action is
twisted by si .
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Let w ∈W and w = si1 · · · sir a reduced expression (rex). The
Bott-Samelson bimodule is defined as

BS(w) := Bsi1
⊗R · · · ⊗R Bsir .

Theorem (Soergel)

S is idempotent complete and Krull-Schmidt. For every w ∈W,
there is an indecomposable bimodule Bw ∈ S, unique up to
degree-preserving isomorphism, such that

(1) Bw is isomorphic to a direct summand, with multiplicity
one, of BS(w) for any rex w of w;

(2) For all t ∈ Z, Bw 〈t〉 is not isomorphic to a direct summand
of BS(u) for any u < w and any rex u of u.

(3) Every indecomposable Soergel bimodule is isomorphic to
Bw 〈t〉 for some w ∈W and t ∈ Z.
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The categorification theorem

Theorem (Soergel, Elias-Williamson)

The Z[v, v−1]-linear map given by

bw 7→ [Bw ]

defines an algebra isomorphism between H and [S]⊕ (split
Grothendieck group).
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The categorification theorem

Let p =
∑s

i=−r aiv
i ∈ N[v, v−1]. Define

B⊕p :=
s⊕

i=−r
B⊕ai 〈−i〉.

Then the above theorem means:

Positive Integrality

For all u, v ∈W , we have

Bu ⊗R Bv
∼=
⊕
w∈W

B
⊕hu,v,w
w ,

whence
hu,v ,w ∈ N[v, v−1].

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer and Zhang
The 2-Representation Theory of Soergel Bimodules of finite Coxeter type



The categorification theorem

Let p =
∑s

i=−r aiv
i ∈ N[v, v−1]. Define

B⊕p :=
s⊕

i=−r
B⊕ai 〈−i〉.

Then the above theorem means:

Positive Integrality

For all u, v ∈W , we have

Bu ⊗R Bv
∼=
⊕
w∈W

B
⊕hu,v,w
w ,

whence
hu,v ,w ∈ N[v, v−1].

Marco Mackaay joint with Mazorchuk, Miemietz, Tubbenhauer and Zhang
The 2-Representation Theory of Soergel Bimodules of finite Coxeter type



Reduction to H-cells

• Let H := L∩L∗ inside some two-sided cell J . There exists a
subquotient monoidal category SH of S, whose indecomposable
objects are all of the form Bx〈t〉 for some x ∈ H and t ∈ Z.

• Recall:

{Graded simple transitive 2-reps of S with apex J}/ '
1:1←→

{Graded simple transitive 2-reps of SH with apex H}/ '
1:1←→

{absolutely cosimple coalgebra objects in add(H)}/ 'MT .
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H-cells: Dihedral groups

The table below contains all Kazhdan-Lusztig cells of D2n (the
H-cells are in blue).

e

s , sts, . . . st, stst, . . .

ts, tsts, . . . t , tst, . . .

w0

Remark: d is the so called Duflo involution of the H-cell.
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Lusztig’s a-function

Fact: hx ,y ,z is symmetric in v and v−1.

Proposition (Lusztig)

Let H := L ∩ L∗. There exists a ∈ N such that for all x , y , z ∈ H:

hx ,y ,z = γx ,y ,z−1va + · · ·+ γx ,y ,z−1v−a.

Moreover, there exists a unique d ∈ H (Duflo involution) such that
d2 = e in W and

γd ,x ,y−1 = γx ,d ,y−1 = γx ,y−1,d = δx ,y

for all x , y ∈ H.

Asymptotic limit:

γx ,y ,z−1 = lim
v→+∞

v−ahx ,y ,z ∈ N.
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Definition (Lusztig’s asymptotic Hecke algebra)

The algebra AH is spanned (over Z[v, v−1]) by aw , w ∈ H, with
multiplication

auav =
∑
w∈H

γu,v ,w−1aw .

The unit is given by ad .

Lusztig defined an injective homomorphism of Z[v, v−1]-algebras
φ : HH → AH ⊗Z Z[v, v−1] by

bu 7→
∑
v∈H

hu,d ,vav .

He also proved that φ is invertible over Q(v).
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Example: AHs
for Coxeter type I2(n).

First consider n = 4. Recall Hs = {s, sts}. We have

b2
s = [2]vbs , bsbsts = bstsbs = [2]vbsts , b

2
sts = [2]vbs ,

where [2]v = v + v−1. We see that a = 1 and

t2
s = ts , tststs = tststs = tsts , t

2
sts = ts .

This shows that AHs
∼= [Uq(so3)-modss] for q = e

πi
4 .

Proposition

For any n ∈ N≥2, we have

AHs
∼= [Uq(so3)-modss]

for q = e
πi
n .
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Lusztig’s asymptotic Soergel categories

Let H := L ∩ L∗.

Theorem (Lusztig, Elias-Williamson)

There exists a (weak) fusion category (AH, ?,∨) s.t.

(1) For every x ∈ H, there exists a simple object Ax .

(2) The Ax , for x ∈ H, form a complete set of pairwise
non-isomorphic simple objects.

(3) For any x , y ∈ H, we have

Ax ?Ay
∼=
⊕
z∈H

A
⊕γx,y,z−1

z .

(4) The identity object is Ad , where d is the Duflo involution.

(5) For every x ∈ H, we have A∨x
∼= Ax−1 .
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Soergel’s hom-formula

Theorem (Soergel, Elias-Williamson)

dim
(
hom(Bx ,By 〈t〉)

)
=

{
δx ,y , if t = 0;

0 if t < 0.

This implies that SH is a filtered category. By the properties of
hx ,y ,z , the part

X≤−a := add
(
{Bw 〈k〉 | w ∈ H, k ≤ −a}

)
is lax monoidal: It is strictly associative with lax identity object
Bd〈−a〉. Define

AH := X≤−a/
(
X<−a

)
.
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Classification of AH

Theorem (Bezrukavnikov-Finkelberg-Ostrik, Ostrik, Elias)

In all but a handful of cases, AH is biequivalent to one of the
following fusion categories:

(a) VectG or Rep(G ), with G = (Z/2Z)k ,S3,S4, S5;

(b) Uq(so3)-modss for q = e
πi
n for some n ∈ N≥2.

• Recall that we have a complete classification of all cosimple
coalgebra objects in these fusion categories, up to
MT-equivalence.
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Main result 1

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

For any finite Coxeter group W and any diagonal H-cell H of W ,
there exists an oplax monoidal functor

Θ: AH −→ SH

with Θ(Ax) ∼= Bx〈−a〉 and (non-invertible) natural transformations

ηx ,y : Θ(Ax ?Ay )→ Θ(Ax)Θ(Ay )

for all x , y ∈ H.
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Main result 2 and main conjecture

General fact: Oplax monoidal functors send coalgebra objects to
coalgebra objects and comodule categories to comodule categories.

Theorem (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

Θ preserves cosimplicity and MT-equivalence and induces an
injection

Θ̂ : {Simple transitive 2-reps of AH}/ '
↪−→

{Graded simple transitive 2-reps of SH with apex H}/ ' .

Conjecture (M-Mazorchuk-Miemietz-Tubbenhauer-Zhang)

Θ̂ is a bijection.
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Some remarks

• We have proved the conjecture for all H which contain the
longest element of a parabolic subgroup of W .

• If true, the conjecture implies that there are finitely many
equivalence classes of simple transitive 2-representations of S.

• For almost all W and H, we would get a complete
classification of the graded, simple transitive 2-representations
of SH with apex H (and therefore of those of S).
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The cell 2-representation

We know quite a bit about the graded, simple transtive
2-representations of SH in the image of Θ̂, e.g. the cell
2-representation CH with apex H.

Theorem (MMMTZ)

Let d ∈ H be the Duflo involution and a the a-value of H.

• Bd is a graded Frobenius object in SH. More precisely,
Bd〈a〉 is a graded algebra object, Bd〈−a〉 a graded coalgebra
object and the product and coproduct morphisms satisfy the
compatibility condition.

• injSH(Bd〈−a〉) ' CH as 2-representations of SH.

Remark: Klein and, separately, Elias-Hogancamp conjectured that
Bd is a Frobenius algebra object in S, which is a stronger statement,
but we do not know how to prove that.
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The cell 2-representation

Proposition

• The underlying basic algebra A of CH is a positively graded,
weakly symmetric Frobenius algebra of graded length 2a.

• Let 1 =
∑

w∈H ew . The action of Bw 〈−a〉 on A-modgr is
given by tensoring A with⊕

u,v∈H
Aev ⊗ euA

⊕γw,u,v−1 .

In particular,

Bd〈−a〉 7→
⊕
u∈H

Aeu ⊗ euA

and µd , δd , ιd , εd are mapped to the A-A bimodule maps from my
first talk (possibly up to some scalars).
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Graded dimension of A

Proposition

For any u,w ∈ H, we have

grdim(euAew ) = vahu−1,w ,d .

In particular,

grdim(euA) = va
∑
w∈H

hu−1,w ,d .
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When is A symmetric?

For any u ∈ H, define

λu :=
∑
w∈H

hu−1,w ,d(1) ∈ N.

Note that λu = dim(euA).

Proposition (MMMTZ)

If A is symmetric, then

λu = λv ∀u, v ∈ H.

Fact: Let W be a Coxeter group of type E6,E7,E8,F4,H3 or H4.
There are H-cells of W which contain u, v such that λu 6= λv , so
for those H-cells A is weakly symmetric but not symmetric.
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The asymptotic cell 2-representation

Note that A0 = ⊕w∈HCew . The asymptotic cell 2-representation of
AH is equivalent to

A0-mod

and the action of Aw on A0-mod is given by tensoring with⊕
u,v∈H

Cev ⊗ euC
⊕γw,u,v−1 .

In particular, the action of Ad is given by tensoring with⊕
u∈H

Ceu ⊗ euC.
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THANKS!!!
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