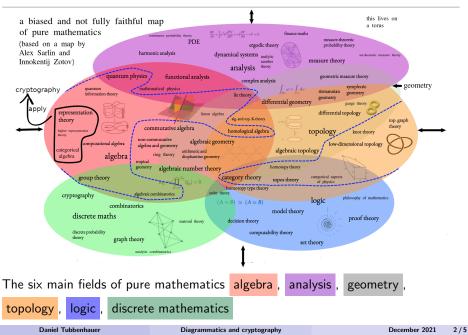
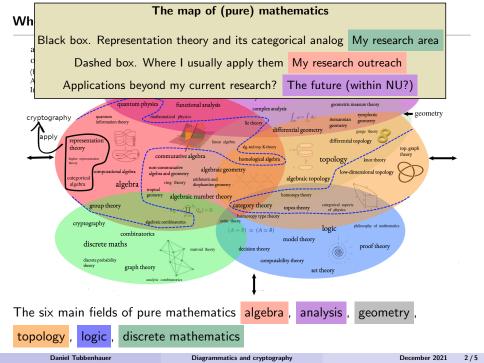
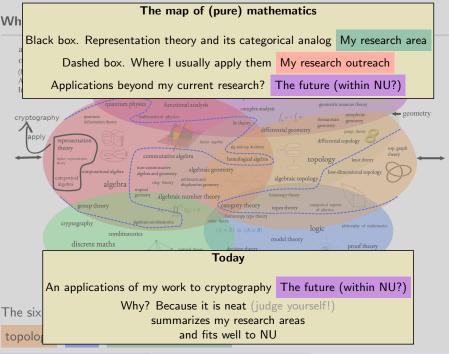

Diagrammatics and cryptography

Or: Not too small, please!

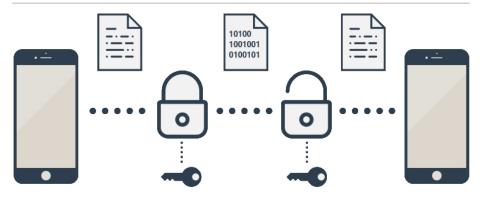
Daniel Tubbenhauer

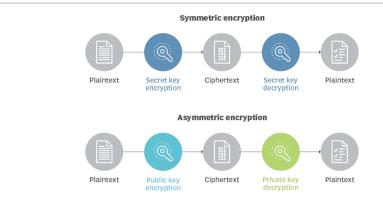


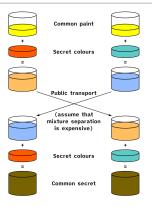

Joint with Mikhail Khovanov and Maithreya Sitaraman


December 2021

Daniel Tubbenhauer

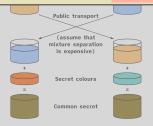

Where are we?




Daniel Tubbenhauer

- E2EE Only the two communicating parties should decrypt the message
- Problem How to transfer the encryption key?
- Diffie–Hellman (DH) Addresses this problem

- Symmetric Both parties us the same secret key
- Problem (still) How to transfer the encryption key?
- Asymmetric Both parties have a public and a private key, no sharing needed


▶ DH Two secrets a, b, public g, send g^a or g^b and get (g^b)^a = g^{ab} = (g^a)^b
 ▶ Catch Relies on the mixtures to be hard ot decompose (discrete log problem)
 ▶ BTW Using colors is not very practical ;-), so usually take a, b, g ∈ (Z/pZ)^x

Colors!

The color picture makes it clear that this can easily be generalized

For example, one could take a different group

Varying the protocol and one can even allow arbitrary monoids

▶ DH Two secrets a, b, public g, send g^a or g^b and get (g^b)^a = g^{ab} = (g^a)^b
▶ Catch Relies on the mixtures to be hard ot decompose (discrete log problem)
▶ BTW Using colors is not very practical ;-), so usually take a, b, g ∈ (Z/pZ)^x

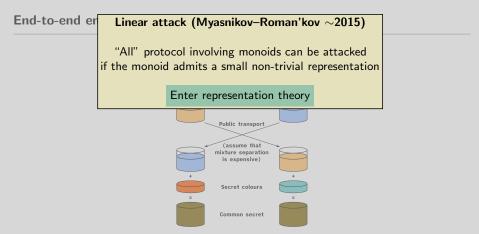
Colors!

The color picture makes it clear that this can easily be generalized

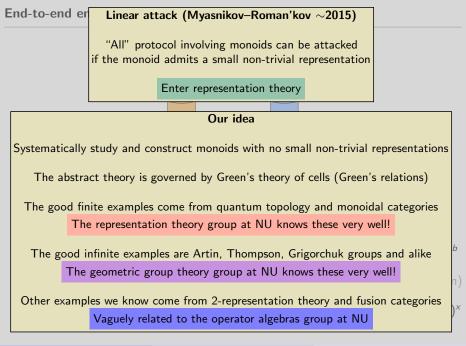
For example, one could take a different group

Varying the protocol and one can even allow arbitrary monoids

Example (Shpilrain–Ushakov (SU) key exchange protocol)


The public data is a monoid S, and two sets $A, B \subset S$ of commuting elements and $g \in S$

Party A chooses privately $a, a' \in A$ and party B chooses privately $b, b' \in A$


Party A communicates aga', B sends bgb' and the common secret is abgb'a' = baga'b'

Note that S can be an arbitrary monoid in this protocol

The complexity of S determines how difficult it is to find the common secret from the public data.

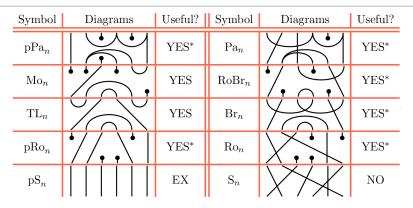
▶ DH Two secrets a, b, public g, send g^a or g^b and get (g^b)^a = g^{ab} = (g^a)^b
▶ Catch Relies on the mixtures to be hard ot decompose (discrete log problem)
▶ BTW Using colors is not very practical ;-), so usually take a, b, g ∈ (Z/pZ)^x

Daniel Tubbenhauer


c, z, 1	Dynkin Diagrams of Simple Lie Algebras															C2	
1	1A, q q q qq Fi q q														2		
(4). A ₁ (3) A ₅	$A_1(2) = A_1(7)$	а.	ç -			` /		·····ē	<i>G</i> 2	ç → →ç		$B_2(3)$	C3(3)	$D_4(2)$	$^{2}D_{4}(2^{2})$	^{6₂(2)' ²A₂(9)}	с,
60	168							ľ'				25928	4585331.680	176 382 600	197 606 720	6248	
(9), 8 ₂ (2)' A ₆	[†] G ₁ (3)′ A ₁ (8)	С.	ç⇒—ç -		Ģ K		- <u> </u>	è— è	è	ç— ç		$B_{2}(4)$	C3(5)	D4(3)	$^{2}D_{4}(3^{2})$	${}^{2}A_{2}(16)$	C5
360	594											979 230	25 St 1	6112179356630	30 373 969 8 29 330	62400	5
A7	$A_1(11)$	E6(2)	E ₇ (2)	$E_{8}(2)$	F4(2)	$G_{2}(3)$	$^{3}D_{4}(2^{3})$	2E6(22)	${}^{2}B_{2}(2^{3})$	${}^{785'}_{2F_{4}(2)'}$	$^{2}G_{2}(3^{3})$	$B_{3}(2)$	C4(3)	$D_{3}(2)$	$^{2}D_{5}(2^{2})$	² A ₂ (25)	C7
2.539	660	ME5 575 270-400	200304	101220220	605 366 400	4 245 696	211 341 312	776553959298	29 120	17 971 200	30413-444-472	1451528	104 805 588	25499295945308	25 8 25 375 536 400	128.000	7
(2) A8	A ₁ (13)	$E_6(3)$	$E_{7}(3)$	$E_8(3)$	F4(3)	$G_{2}(4)$	$^3D_4(3^3)$	${}^{2}E_{6}(3^{2})$	$^{2}B_{2}(2^{5})$	${}^{2}F_{4}(2^{3})$	2G2(35)	$B_{2}(5)$	C3(7)	D4(5)	${}^{2}D_{4}(4^{2})$	$^{2}A_{3}(9)$	<i>c</i> 11
20 168	1092		NAMES OF TAXABLE	EINSEI	111144361600	251 595 808	20360871566192	LOATE AND	32 537 680	588 176 514 488	409 348 502	4680.000	101 101 100		211445-000	3 265 920	n
A9	A ₁ (17)	E6(4)	E7(4)	E8(4)	F4(4)	G2(5)	³ D ₄ (4 ³)	${}^{2}E_{6}(4^{2})$	$^2B_2(2^7)$	2F4(25)	2G2(37)	$B_{2}(7)$	C3(9)	D5(3)	² D ₄ (5 ²)	² A ₂ (64)	C13
151 440	2445 PStaceOut.StaceArt	10.001	protitutat	http://www.cape	100 207 100 120 200	3.839.000000	642790430	No. of Concession	34 803 303 680	10110-10.0010	312349332482	135 297 680 Outstill Databil	emisecco P5zw(e)	N1 303 139 200	00000000	5515776 PS0 ₆₊₁ (4)	13 Z,
$A_{\rm H}$	$A_{w}(q)$	$E_6(q)$	$E_7(q)$	$E_8(q)$	$F_4(q)$	$G_2(q)$	$^{3}D_{4}(q^{3})$	${}^{2}E_{6}(q^{2})$	${}^{2}B_{2}(2^{2s+1})$	${}^{3}F_{4}(2^{2n+1})$	${}^{3}G_{1}(3^{2n+1})$	$B_{\mu}(q)$	$C_{\pi}(q)$	$D_{\pi}(q)$	${}^{2}D_{0}(q^{2})$	$^{2}A_{\pi}(q^{2})$	
*	State-1	11.21.21.2	at a prio		15.202	AC-14-0	011513	Sugar	A2100-0	Sec.	Comes.	del pr-e	al-spe-s	- the second	Station .	555 (W-0-0)	
Alternation Classical G Chevaller	Thevalley Group	24	Alternates*							703.700	11)	нім				2,743,1978	
Classical Stainberg Groups Steinberg Groups			Symbol		M11	M12	M22	M23	M24	h	J2	ls.	J4	HS	McL	He	Ru
Sumid Groups Ree Groups and Tits Group*			Order®		7900	99.040	443 520	18280368	244 823-040	175 560	634.803	50 232 590	8677562680 677562680	44.352.000	898 128 000	4430367300	145 55 144 888
Sporadic Group Cyclic Gro	Greape	Terre	de groups and families or left in other name														
The group V_{ALT} is not a group of Lie type, while the tracket of the type, the tracket of the type of the typ			52	0'N\$,0-5	-3	-2	4	I ₂ D	145	15.E	M(22)	M(33)	5M(NY	F2	I2. M1		
is usually given boundery Lie type states. $g_{1} \otimes_{Q} (\mathcal{D}^{1}) \otimes_{Q} (\mathcal{D}^{2})$. The proper states on the second set are the three. The proper states on the second set are the three.				Suz	O'N	Coz	Co ₂	Co1	HN	Ly	Th	Fi22	Fi23	Fi're	в	M	
	The groups stating on the stored sets are the che- ter description of the stored set of the che- sis the description of the stored set of the che- set of the description of the stored set of the che- set of the description of the stored set of the che- ter description of the stored set of the che- set of the description of the stored set of the che- ter description of the stored set of the stored								4107779-806	273.630	81799179	90753963		(10) (2) (2)	120202020920		

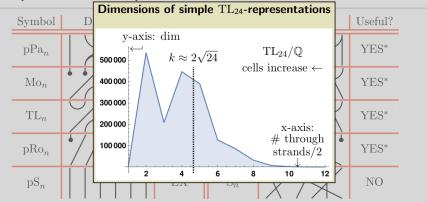
Classical examples Cyclic groups have only big representations over \mathbb{F}_p

► Non-examples Groups of Lie type have all very small representations


Non-examples Sporadic groups are too small to be useful

Daniel Tubbenhauer

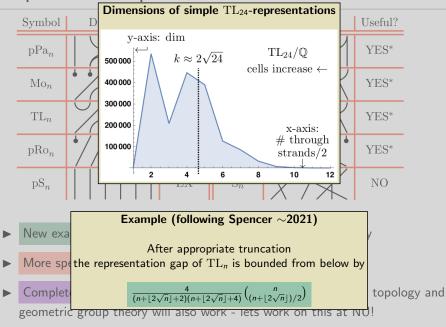
Classical examples Cyclic groups have only big representations over F_p
 Non-examples Groups of Lie type have all very small representations
 Non-examples Sporadic groups are too small to be useful
 Daniel Tubbenhauer Diagrammatics and cryptography December 2021


4/5

New examples Finite monoids coming from quantum topology

- More specific Submonoids of the partition monoid above
- Completely open I claim your favorite example from quantum topology and geometric group theory will also work - lets work on this at NU!

Daniel Tubbenhauer


New examples Finite monoids coming from quantum topology

► More specific Submonoids of the partition monoid above

Completely open I claim your favorite example from quantum topology and geometric group theory will also work - lets work on this at NU!

Daniel Tubbenhauer

►

topology logic discrete mathematics Burning Mill 2/5

Examples and non-examples

 Non-examples Sporadic groups are too small to be useful Basist Tutkenbaser Dispansation and reproperty Because 2005 A/K

End-to-end encryption

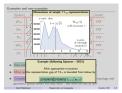
- ► E2EE Only the two communicating parties should decrypt the message
- Problem How to transfer the encryption key?
- Diffie-Hellman (DH) Addresses this problem

Exeld Tublechaser Elegenmetric and rightspeely Secondar 2011 3/1

Examples and non-examples

New examples Finite monoids coming from quantum topology

- More specific Submonoids of the partition monoid above
- Completely open I claim your favorite example from quantum topology and geometric group theory will also work - lets work on this at NUI


Pauld Tubleshear Eleguneeries and rightspeely Recenter 2011 A/A

There is still much to do...

NAME BY CARACTER PROCESS Symmetric Both parties us the same secret key Problem (still) How to transfer the encryption key? · Asymmetric Both parties have a public and a private key, no sharing needed Raid Selectual Represents of sympoly Research or 1615 1/15

End-to-end encryption

topology, kojci, diacrete mathematical ageora, anayas, geometry, boology, kojci, diacrete mathematical

Examples and non-examples

Because 2005 A/K

Basist Tutkenbaser Dispansation and reproperty

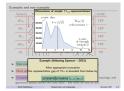
End-to-end encryption

► E2EE Only the two communicating parties should decrypt the message

Problem How to transfer the encryption key?

Diffie-Hellman (DH) Addresses this problem

Reald Tobacture Regulatories and argangegip December 2011 3/5


Examples and non-examples

- More specific Submonoids of the partition monoid above
- Completely open
 I claim your favorite example from quantum topology and
- geometric group theory will also work lets work on this at NUI based Mantaer Represented spagagety Research 19

Thanks for your attention!

