
Cellular structures using Uq-tilting modules

Or: centralizer algebras are fun!
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The main theorem

Theorem

Let T be a Uq = Uq(g)-tilting module. Then EndUq
(T ) is a cellular algebra.

Thus, properties of EndUq
(T ) follow via roots and weight combinatorics.

I have to explain the words in red. But let us start with an example.

Example(Schur 1901)

Let Sd be the symmetric group in d letters and let ∆1(ω1) be the vector
representation of U1 = U1(gln). Take T = ∆1(ω1)

⊗d , then

ΦSW : K[Sd ] ։ EndU1
(T ) and ΦSW : K[Sd ]

∼=
−→ EndU1

(T ), if n ≥ d .

Since T is a U1-tilting module, K[Sd ] is cellular.
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Quantum groups at roots of unity

Start with U1 = U1(g) and quantize. We obtain Uv = Uv (g) with v being an
indeterminate. Roughly: fix an arbitrary element q ∈ K− {0} and consider the
specialization v → q and obtain Uq = Uq(g).

Some fact:

Uv has “the same” representation theory as U1.

If K = C, then the representation theory is as in the classical case.

In contrast, Uq can be non-semisimple:

If q 6= ±1, q ∈ K not a root of unity, then Uq behaves again similar to Uv .
If q 6= ±1, q ∈ K is a root of unity, then Uq has a (highly) non-semisimple
representation theory.
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“Standard” and “co-Standard” modules: ∆q(λ) and ∇q(λ)

Fix a dominant g-weight λ ∈ X+.

In case Uv :

There is a simple Uv -module ∆v (λ) called Weyl module and a dual Weyl
module ∇v (λ) isomorphic to ∆v (λ).
The set {∆v (λ) | λ ∈ X+} is a complete set of pairwise non-isomorphic,
simple Uv -modules (of type 1).

In case Uq :

The ∆q(λ)’s (the ∇q(λ)’s) are no longer (semi-)simple in general. But they
have unique simple heads (simple socles) Lq(λ).
The set {Lq(λ) | λ ∈ X+} is a complete set of pairwise non-isomorphic, simple
Uq-modules (of type 1).

The Weyl and the dual Weyl modules are easy to write down and their characters
are as in the classical case.
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Exempli gratia

Set [1] = 1, [2] = v + v−1, [3] = v2 + 1 + v−2. For sl2 we have X+ = Z≥0 and

∆v (3) : m3

[1]
//

v−3

��
m2

[3]
oo

[2]
//

v−1

��
m1

[3]
//

[2]
oo

v+1

��
m0,

[1]
oo

v+3

��

where E “acts to the right”, F “acts to the left” and K “acts as a loop”.

Let q be a complex, primitive third root of unity. Then

∆q(3) : m3

+1
//

q−3

��
m2

0
oo

−1
//

q−1

��
m1

0 //

−1
oo

q+1

��
m0.

+1
oo

q+3

��

88

+1

ff

The C-span of {m1,m2} is now stable under the action of Uq(sl2): this is Lq(1).
The simple head is Lq(3) ∼= ∆q(3)/Lq(1) and is spanned by {m0,m3}.
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Uq-tilting modules as atoms?

A Uq-tilting module T is a Uq-module with a ∆q-filtration and a ∇q-filtration:

“T is built out of the easy pieces ∆q(λ),∇q(λ)”.

Why study Uq-tilting modules?

Interesting tensor categories with nice homological properties.

Applications in topology: link invariants, 3-manifold invariants, modular
categories and 3-TQFT’s (Witten, Reshetikhin-Turaev, ...).

Connections with affine Kac-Moody algebras (Kazhdan-Lusztig, ...).

Connections with the (modular) representation theory of the symmetric group
and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon, ...).

Nice combinatorics à la Kazhdan-Lusztig (Soergel, ...).

Fusion (Andersen-Stroppel, ...).

Quantum cohomology (Witten, Korff-Stroppel, ...).

More...
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Cellular algebras

Definition(Graham-Lehrer 1996)

Let (P ,≤), Iλ be finite (po)sets. A K-algebra A is cellular if it has a basis

{cλij | λ ∈ P , i , j ∈ I},

(and some anti-involution i(cλij ) = cλji ) such that (for friends of higher order)

acλij =
∑

k∈Iλ

rik(a)c
λ

kj + friends.

Theorem(Graham-Lehrer 1996)

Form Cλ = {cλi } with formal cλi and action given by the rik(a). The set

{Lλ = Cλ/Rad(Cλ) | λ ∈ P0}

forms a complete set of pairwise non-isomorphic, simple A-modules (and some
more voodoo in this spirit is possible).
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EndUq
(T ) is prototypically cellular

Cell datum:

(P ,≤) = ({λ ∈ X+ | (T : ∇q(λ)) = (T : ∆q(λ)) 6= 0},≤X ).

Iλ = {1, . . . , (T : ∇q(λ))} for λ ∈ P .

Some K-linear anti-involution with D(∆q(λ)) ∼= ∇q(λ),D(∇q(λ)) ∼= ∆q(λ).

Cellular basis {cλij = gλ

i ◦ f
λ

j | λ ∈ P , i , j ∈ Iλ}.

Theorem

This gives a cellular datum on EndUq
(T ) for any Uq-tilting module T .

cλij =

· · ·

· · ·

· · ·

· · ·

∆q (λ)

Tq (λ)

∇q (λ)

indecomposable

filtration part

filtration part
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Consequences of cellularity - Uq-tilting view

Set C (λ) = HomUq
(∆q(λ),T ) (cell modules). The set

{L(λ) = C (λ)/Rad(λ) | λ ∈ P0}

is a complete set of pairwise non-isomorphic, simple EndUq
(T )-modules.

λ ∈ P0 iff Tq(λ) is a summand of T .

We can calculate the dimensions of the simples:

dim(L(λ)) = mλ, T ∼=
⊕

λ∈X+

Tq(λ)
⊕mλ .

The algebra EndUq
(T ) is semisimple iff T has only simple Weyl factors.

Check this e.g. via Jantzen’s sum formula.

More...
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A unified approach to cellularity

Our approach generalizes (Uq is just a “dummy”), e.g. to the ∞-dimensional
world (e.g. parabolic category Op): the following list is just the tip of the iceberg.

The following algebras fit in our set-up as well:

The Iwahori-Hecke algebras, their quotients and related algebras (e.g. K[Sd ],
the Temperley-Lieb algebra, Spider algebras etc.).

The Ariki-Koike algebras, their quotients and related algebras (e.g.
C[Z/rZ ≀ Sd ], quantized rook monoid algebra, blob algebras etc.).

The (walled) Brauer algebras, their quotients and related algebras (e.g.
quantum walled Brauer algebras, Birman-Murakami-Wenzl algebras etc.).

More: quotients of these, “∞-dimensional analogs of Schur-Weyl dualities”
give cyclotomic KL-R and web algebras etc. turning up in categorification.

Everything should work in the graded set-up as well.
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There is still much to do...

Daniel Tubbenhauer Examples that fit into the picture September 2015 12 / 12



Thanks for your attention!
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