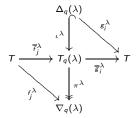
Cellular structures using U_q -tilting modules

Or: centralizer algebras are fun!

Daniel Tubbenhauer



Joint work with Henning Haahr Andersen and Catharina Stroppel

September 2015

Theorem

Let T be a $U_q = U_q(\mathfrak{g})$ -tilting module. Then $\operatorname{End}_{U_q}(T)$ is a cellular algebra.

Thus, properties of $\operatorname{End}_{U_d}(\mathcal{T})$ follow via roots and weight combinatorics.

I have to explain the words in red. But let us start with an example.

Example(Schur 1901)

Let S_d be the symmetric group in d letters and let $\Delta_1(\omega_1)$ be the vector representation of $\mathbf{U}_1 = \mathbf{U}_1(\mathfrak{gl}_n)$. Take $\mathcal{T} = \Delta_1(\omega_1)^{\otimes d}$, then

 $\Phi_{\mathrm{SW}} \colon \mathbb{K}[S_d] \twoheadrightarrow \mathrm{End}_{\mathbf{U}_1}(\mathcal{T}) \quad \text{and} \quad \Phi_{\mathrm{SW}} \colon \mathbb{K}[S_d] \xrightarrow{\cong} \mathrm{End}_{\mathbf{U}_1}(\mathcal{T}), \text{ if } n \geq d.$

Since T is a **U**₁-tilting module, $\mathbb{K}[S_d]$ is cellular.

1 U_q -tilting modules and cellular algebras

- \mathbf{U}_q and its representation theory
- Cellularity and **U**_q-tilting modules

2 Consequences and examples

- There is always a "dual" statement
- Examples that fit into the picture

Start with $\mathbf{U}_1 = \mathbf{U}_1(\mathfrak{g})$ and quantize. We obtain $\mathbf{U}_v = \mathbf{U}_v(\mathfrak{g})$ with v being an indeterminate. Roughly: fix an arbitrary element $q \in \mathbb{K} - \{0\}$ and consider the specialization $v \to q$ and obtain $\mathbf{U}_q = \mathbf{U}_q(\mathfrak{g})$.

Some fact:

- \mathbf{U}_{v} has "the same" representation theory as \mathbf{U}_{1} .
- $\bullet\,$ If $\mathbb{K}=\mathbb{C},$ then the representation theory is as in the classical case.
- In contrast, \mathbf{U}_q can be non-semisimple:
 - If $q \neq \pm 1$, $q \in \mathbb{K}$ not a root of unity, then U_q behaves again similar to U_v .
 - If $q \neq \pm 1$, $q \in \mathbb{K}$ is a root of unity, then U_q has a (highly) non-semisimple representation theory.

Fix a dominant \mathfrak{g} -weight $\lambda \in X^+$.

- In case \mathbf{U}_{v} :
 - There is a simple U_ν-module Δ_ν(λ) called Weyl module and a dual Weyl module ∇_ν(λ) isomorphic to Δ_ν(λ).
 - The set $\{\Delta_v(\lambda) \mid \lambda \in X^+\}$ is a complete set of pairwise non-isomorphic, simple U_v -modules (of type 1).
- In case U_q:
 - The Δ_q(λ)'s (the ∇_q(λ)'s) are no longer (semi-)simple in general. But they have unique simple heads (simple socles) L_q(λ).
 - The set $\{L_q(\lambda) \mid \lambda \in X^+\}$ is a complete set of pairwise non-isomorphic, simple U_q -modules (of type 1).

The Weyl and the dual Weyl modules are easy to write down and their characters are as in the classical case.

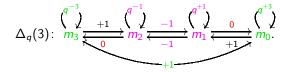
Exempli gratia

Set $[1] = 1, [2] = v + v^{-1}, [3] = v^2 + 1 + v^{-2}$. For \mathfrak{sl}_2 we have $X^+ = \mathbb{Z}_{\geq 0}$ and

$$\Delta_{\nu}(3): \begin{array}{c} \begin{pmatrix} v^{-3} \\ m_3 \end{pmatrix} \xrightarrow{[1]} & \begin{pmatrix} v^{-1} \\ m_2 \end{pmatrix} \xrightarrow{[2]} & \begin{pmatrix} v^{+1} \\ m_1 \end{pmatrix} \xrightarrow{[3]} & \begin{pmatrix} v^{+3} \\ m_0 \end{pmatrix} \\ \hline \end{array}$$

where E "acts to the right", F "acts to the left" and K "acts as a loop".

Let q be a complex, primitive third root of unity. Then



The \mathbb{C} -span of $\{m_1, m_2\}$ is now stable under the action of $\mathbf{U}_q(\mathfrak{sl}_2)$: this is $L_q(1)$. The simple head is $L_q(3) \cong \Delta_q(3)/L_q(1)$ and is spanned by $\{m_0, m_3\}$. A \mathbf{U}_q -tilting module T is a \mathbf{U}_q -module with a Δ_q -filtration and a ∇_q -filtration:

"T is built out of the easy pieces $\Delta_q(\lambda), \nabla_q(\lambda)$ ".

Why study \mathbf{U}_q -tilting modules?

- Interesting tensor categories with nice homological properties.
- Applications in topology: link invariants, 3-manifold invariants, modular categories and 3-TQFT's (Witten, Reshetikhin-Turaev, ...).
- Connections with affine Kac-Moody algebras (Kazhdan-Lusztig, ...).
- Connections with the (modular) representation theory of the symmetric group and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon, ...).
- Nice combinatorics à la Kazhdan-Lusztig (Soergel, ...).
- Fusion (Andersen-Stroppel, ...).
- Quantum cohomology (Witten, Korff-Stroppel, ...).
- More...

Definition(Graham-Lehrer 1996)

Let $(\mathcal{P}, \leq), \mathcal{I}^{\lambda}$ be finite (po)sets. A \mathbb{K} -algebra A is cellular if it has a basis

$$\{c_{ij}^{\lambda} \mid \lambda \in \mathcal{P}, i, j \in \mathcal{I}\},\$$

(and some anti-involution $i(c_{ij}^{\lambda}) = c_{ji}^{\lambda}$) such that (for friends of higher order)

$$ac_{ij}^{\lambda} = \sum_{k \in \mathcal{I}^{\lambda}} r_{ik}(a)c_{kj}^{\lambda} + \text{friends.}$$

Theorem(Graham-Lehrer 1996)

Form $C^{\lambda} = \{c_i^{\lambda}\}$ with formal c_i^{λ} and action given by the $r_{ik}(a)$. The set

$$\{L^{\lambda} = C^{\lambda}/\operatorname{Rad}(C^{\lambda}) \mid \lambda \in \mathcal{P}_0\}$$

forms a complete set of pairwise non-isomorphic, simple A-modules (and some more voodoo in this spirit is possible).

Daniel Tubbenhauer

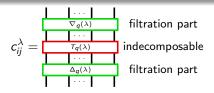
$\operatorname{End}_{\mathbf{U}_q}(T)$ is prototypically cellular

Cell datum:

- $(\mathcal{P}, \leq) = (\{\lambda \in X^+ \mid (\mathcal{T}: \nabla_q(\lambda)) = (\mathcal{T}: \Delta_q(\lambda)) \neq 0\}, \leq_X).$
- $\mathcal{I}^{\lambda} = \{1, \dots, (T : \nabla_q(\lambda))\}$ for $\lambda \in \mathcal{P}$.
- Some K-linear anti-involution with $\mathcal{D}(\Delta_q(\lambda)) \cong \nabla_q(\lambda), \mathcal{D}(\nabla_q(\lambda)) \cong \Delta_q(\lambda).$
- Cellular basis $\{c_{ij}^{\lambda} = \overline{g}_i^{\lambda} \circ \overline{f}_j^{\lambda} \mid \lambda \in \mathcal{P}, i, j \in \mathcal{I}^{\lambda}\}.$

Theorem

This gives a cellular datum on $\operatorname{End}_{U_q}(\mathcal{T})$ for any U_q -tilting module \mathcal{T} .



Consequences of cellularity - U_q -tilting view

• Set $C(\lambda) = \operatorname{Hom}_{U_q}(\Delta_q(\lambda), T)$ (cell modules). The set

 $\{L(\lambda) = C(\lambda)/\operatorname{Rad}(\lambda) \mid \lambda \in \mathcal{P}_0\}$

is a complete set of pairwise non-isomorphic, simple $\operatorname{End}_{U_a}(T)$ -modules.

- $\lambda \in \mathcal{P}_0$ iff $T_q(\lambda)$ is a summand of T.
- We can calculate the dimensions of the simples:

$$\dim(L(\lambda)) = m_{\lambda}, \quad T \cong \bigoplus_{\lambda \in X^+} T_q(\lambda)^{\oplus m_{\lambda}}.$$

- The algebra End_{U_q}(T) is semisimple iff T has only simple Weyl factors. Check this e.g. via Jantzen's sum formula.
- More...

Our approach generalizes (\mathbf{U}_q is just a "dummy"), e.g. to the ∞ -dimensional world (e.g. parabolic category \mathcal{O}^p): the following list is just the tip of the iceberg.

The following algebras fit in our set-up as well:

- The Iwahori-Hecke algebras, their quotients and related algebras (e.g. K[S_d], the Temperley-Lieb algebra, Spider algebras etc.).
- The Ariki-Koike algebras, their quotients and related algebras (e.g. $\mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d]$, quantized rook monoid algebra, blob algebras etc.).
- The (walled) Brauer algebras, their quotients and related algebras (e.g. quantum walled Brauer algebras, Birman-Murakami-Wenzl algebras etc.).
- More: quotients of these, "∞-dimensional analogs of Schur-Weyl dualities" give cyclotomic KL-R and web algebras etc. turning up in categorification.
- Everything should work in the graded set-up as well.

There is still much to do...

Thanks for your attention!