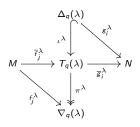
Cellular structures using \mathbf{U}_q -tilting modules

Or: centralizer algebras are fun!

Daniel Tubbenhauer



Joint work with Henning Haahr Andersen and Catharina Stroppel

July 2015

The main theorem

Theorem

Let T be a $\mathbf{U}_q = \mathbf{U}_q(\mathfrak{g})$ -tilting module. Then $\mathrm{End}_{\mathbf{U}_q}(T)$ is a cellular algebra.

Thus, properties of $\operatorname{End}_{\mathbf{U}_{\sigma}}(T)$ follow via roots and weight system combinatorics.

I have to explain the words in red. But let us start with an example.

Example(Schur 1901)

Let S_d be the symmetric group in d letters and let $\Delta_1(\omega_1)$ be the vector representation of $\mathbf{U}_1 = \mathbf{U}_1(\mathfrak{gl}_n)$. Take $T = \Delta_1(\omega_1)^{\otimes d}$, then

$$\Phi_{\mathrm{SW}} \colon \mathbb{K}[S_d] \twoheadrightarrow \mathrm{End}_{\mathbf{U}_1}(T) \quad \text{and} \quad \Phi_{\mathrm{SW}} \colon \mathbb{K}[S_d] \xrightarrow{\cong} \mathrm{End}_{\mathbf{U}_1}(T), \text{ if } n \geq d.$$

Since T is a \mathbf{U}_1 -tilting module, $\mathbb{K}[S_d]$ is cellular.

- \mathbf{U}_q -tilting modules
 - ullet $oldsymbol{\mathsf{U}}_q$ and its representation theory
 - ullet The category of $oldsymbol{\mathsf{U}}_q$ -tilting modules
- 2 Cellularity of $End_{U_q}(T)$
 - Cellular algebras
 - Cellularity and \mathbf{U}_{q} -tilting modules
- 3 The representation theory of $\operatorname{End}_{\mathbf{U}_q}(T)$
 - Consequences of cellularity \mathbf{U}_q -tilting view
 - Examples that fit into the picture

Why quantum groups and tilting modules?

- Interesting tensor categories.
- Applications in topology: link invariants, 3-manifold invariants and modular categories (Witten, Reshetikhin-Turaev, ...).
- Connections with affine Kac-Moody algebras (Kazhdan-Lusztig, ...).
- Connections with the (modular) representation theory of the symmetric group and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon, ...).
- Nice combinatorics à la Kazhdan-Lusztig (Soergel, ...).
- Fusion (Andersen-Stroppel, Kazhdan-Lusztig, ...).
- Quantum cohomology (Witten, Korff-Stroppel, ...).

More...

Quantum enveloping algebras – general g works similar

Recall that \mathfrak{sl}_2 is generated by

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The \mathbb{Q} -algebra $\mathbf{U}_1(\mathfrak{sl}_2)$ consists of words in the symbols E, F, H modulo (plus other relations)

$$EF - FE = H.$$

Its quantum cousin, the $\mathbb{Q}(v)$ -algebra $\mathbf{U}_v(\mathfrak{sl}_2)$, consists of words in the symbols $E, F, K^{\pm 1}$ modulo (plus other relations)

$$EF - FE = \frac{K - K^{-1}}{v - v^{-1}}.$$

Roughly: $K = v^H$ and $\lim_{v \to 1} \mathbf{U}_v(\mathfrak{sl}_2) = \mathbf{U}_1(\mathfrak{sl}_2)$.

Quantized counting

The quantum integers and the quantum factorials are:

$$[a] = \frac{v^{a} - v^{-a}}{v^{1} - v^{-1}} = v^{a-1} + v^{a-3} + \dots + v^{-a+3} + v^{-a+1} \in \mathbb{Q}(v),$$
$$[b]! = [1] \cdots [b-1][b] \in \mathbb{Q}(v).$$

Example

For "v=1" the quantum numbers are [a]=a. Thus, in most cases, except some "exceptional" cases, [a] is a quantized version of a.

The "exceptional" cases are the ones where " $v=q\in\mathbb{K}-\{0\}$ " is a root of unity with q^2 of order ℓ : $[a]=0\in\mathbb{K}$ iff q is a root of unity with q^2 of order ℓ .

Thus, $[3] = v^2 + 1 + v^{-2} = 0$ iff " $v = q \in \mathbb{K} - \{0\}$ " is a third root of unity.

Quantum groups at roots of unity

Fix an arbitrary element $q \in \mathbb{K} - \{0\}$ and set $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$. Define

$$\mathbf{U}_q = \mathbf{U}_q(\mathfrak{g}) = \mathbf{U}_{\mathcal{A}} \otimes_{\mathcal{A}} \mathbb{K}.$$

Here $\mathbf{U}_{\mathcal{A}}=\mathbf{U}_{\mathcal{A}}(\mathfrak{g})$ is Lusztig's \mathcal{A} -form: the \mathcal{A} -subalgebra of $\mathbf{U}_{v}=\mathbf{U}_{v}(\mathfrak{g})$ generated by $K_{i}^{\pm 1}$, $E_{i}^{(j)}=\frac{1}{|j|!}E^{j}$ and $F_{i}^{(j)}=\frac{1}{|j|!}F^{j}$ for $i=1,\ldots,n-1$ and $j\in\mathbb{N}$.

Example

In the \mathfrak{sl}_2 case, the $\mathbb{Q}(v)$ -algebra $\mathbf{U}_v(\mathfrak{sl}_2)$ is generated by K, K^{-1} and E, F subject to some relations.

Let q be a complex, primitive third root of unity. $\mathbf{U}_q(\mathfrak{sl}_2)$ is generated by $K, K^{-1}, E, F, E^{(3)}$ and $F^{(3)}$ subject to some relations. Here $E^{(3)}, F^{(3)}$ are extra generators, since $E^3 = [3]!E^{(3)} = 0$ because of [3] = 0.

Atoms of representation categories

What are the "atoms" of the category A-**Mod** (e.g. finite-dimensional A-module)? And how to construct or at least parametrize these "atoms"?

"Objects without substructure?" (aka, simple) or "Objects without finer decomposition?" (aka, indecomposable).

A representation category A-**Mod** is semisimple iff all objects are sums of simples. For these categories the questions are usually "easy" to answer.

Beware: dividing into semisimple representation categories and non-semisimple representation categories is like dividing the world into bananas and non-bananas.

Example(Maschke 1899, Frobenius 1900, Young 1901)

 $\mathbb{K}[S_d]$ -Mod_{fd} is semisimple iff $\operatorname{char}(\mathbb{K})$ does not divide d!. In this case the simple $\mathbb{K}[S_d]$ -modules are parametrized by partitions aka Young diagrams.

Weyl modules as atoms

For each dominant \mathbf{U}_{v} -weight $\lambda \in X^{+}$ there is a simple \mathbf{U}_{v} -module $\Delta_{v}(\lambda)$ called Weyl module. Fact: the set $\{\Delta_{v}(\lambda) \mid \lambda \in X^{+}\}$ is a complete set of pairwise non-isomorphic, simple \mathbf{U}_{v} -modules (of type 1).

Example

For \mathfrak{sl}_2 we have $X^+=\mathbb{Z}_{\geq 0}.$ The Weyl module $\Delta_{\nu}(3)$ is

where E "acts to the right", F "acts to the left" and K "acts as a loop".

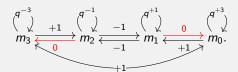
The category \mathbf{U}_{v} - \mathbf{Mod}_{fd} is semisimple.

Weyl modules as atoms?

Fact: the $\Delta_q(\lambda)$'s are no longer (semi-)simple in general. But they have unique simple heads $L_q(\lambda)$. Fact: the set $\{L_q(\lambda) \mid \lambda \in X^+\}$ is a complete set of pairwise non-isomorphic, simple \mathbf{U}_q -modules (of type 1).

Example

Let $\mathfrak{g} = \mathfrak{sl}_2$ and q be a complex, primitive third root of unity. $\Delta_q(3)$ is



The \mathbb{C} -span of $\{m_1, m_2\}$ is now stable under the action of $\mathbf{U}_q(\mathfrak{sl}_2)$: this is $L_q(1)$. The simple head is $L_q(3) \cong \Delta_q(3)/L_q(1)$ and is spanned by $\{m_0, m_3\}$.

The category \mathbf{U}_{q} - \mathbf{Mod}_{fd} is not semisimple in general.

\mathbf{U}_q -tilting modules as atoms?

Let $\Delta_q(\lambda)$ be a Weyl module and $\nabla_q(\lambda)$ its dual.

A \mathbf{U}_q -tilting module T is a \mathbf{U}_q -module with a Δ_q -filtration and a ∇_q -filtration:

$$T = M_0 \supset M_1 \supset \cdots \supset M_{k'} \supset \cdots \supset M_{k-1} \supset M_k = 0,$$

$$0 = N_0 \subset N_1 \subset \cdots \subset N_{k'} \subset \cdots \subset N_{k-1} \subset N_k = T,$$

such that $M_{k'}/M_{k'+1}$ is some $\Delta_q(\lambda)$ and $N_{k'+1}/N_{k'}$ is some $\nabla_q(\lambda)$.

Example

All \mathbf{U}_{v} -modules are \mathbf{U}_{v} -tilting modules.

For our favorite example $q^3=1\in\mathbb{C}$ and $\mathfrak{g}=\mathfrak{sl}_2$: $\Delta_q(i)$ is a \mathbf{U}_q -tilting module iff i=0,1 or $i\equiv -1$ mod 3.

\mathbf{U}_{q} -tilting modules as atoms.

The category of \mathbf{U}_q -tilting modules \mathcal{T} has some nice properties:

- ullet T is closed under finite direct sums and tensor products.
- The indecomposables $T_q(\lambda)$ of $\mathcal T$ are parametrized by $\lambda \in X^+$. They have λ as their maximal weight and contain $\Delta_q(\lambda)$ with multiplicity 1. We have

$$\Delta_q(\lambda) \xrightarrow{\iota^{\lambda}} T_q(\lambda) \xrightarrow{\pi^{\lambda}} \nabla_q(\lambda).$$

Example

The vector representation $\Delta_q(1)$ is a $\mathbf{U}_q(\mathfrak{sl}_2)$ -tilting module. Thus, $T=\Delta_q(1)^{\otimes d}$ is. Then $T_q(d)$ is the indecomposable summand of T containing $\Delta_q(d)$.

Example

 $\Delta_q(\lambda)$ is a \mathbf{U}_q -tilting module for minuscule λ . Thus, tensor products of these are.

The Ext-vanishing

We have for all $\lambda, \mu \in X^+$ that

$$\operatorname{Ext}_{\mathbf{U}_q}^i(\Delta_q(\lambda), \nabla_q(\mu)) \cong egin{cases} \mathbb{K}c^{\lambda}, & \text{if } i=0 \text{ and } \lambda=\mu, \\ 0, & \text{else}, \end{cases}$$

where $c^\lambda\colon \Delta_q(\lambda) o
abla_q(\lambda)$ is the ${f U}_q$ -homomorphisms that sends head to socle.

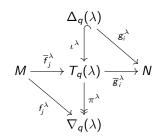
Assume that M has a Δ_q -filtration and N has a ∇_q -filtration.

- We have $\dim(\operatorname{Hom}_{\mathbf{U}_q}(M,\nabla_q(\lambda)))=(M:\Delta_q(\lambda)).$
- We have $\dim(\operatorname{Hom}_{\mathbf{U}_q}(\Delta_q(\lambda), N)) = (N : \nabla_q(\lambda)).$

\mathbf{U}_q -tilting modules as atoms!

$$T\in \boldsymbol{\mathcal{T}}\quad \text{iff}\quad \operatorname{Ext}^1_{\boldsymbol{U}_q}(T,\nabla_q(\lambda))=0=\operatorname{Ext}^1_{\boldsymbol{U}_q}(\Delta_q(\lambda),T)\quad \text{for all }\lambda\in X^+.$$

In particular, if M has a Δ_{q} - and N has a ∇_{q} -filtration:



In words: any \mathbf{U}_q -homomorphism $g\colon \Delta_q(\lambda) \to N$ extends to an \mathbf{U}_q -homomorphism $\overline{g}\colon T_q(\lambda) \to N$ whereas any \mathbf{U}_q -homomorphism $f\colon M \to \nabla_q(\lambda)$ factors through $T_q(\lambda)$ via $\overline{f}\colon M \to T_q(\lambda)$.

Exempli gratia

Consequence of the discussion before:

$$\text{dim}(\operatorname{End}_{\textbf{U}_q}(\mathcal{T})) = \sum_{\lambda \in X^+} (\mathcal{T} : \Delta_q(\lambda))^2 = \sum_{\lambda \in X^+} (\mathcal{T} : \nabla_q(\lambda))^2.$$

Take $T = \Delta_q(\lambda)^{\otimes d}$. If $\lambda \in X^+$ is minuscule as a \mathbf{U}_q -weight, then $\Delta_q(\lambda)$ is always \mathbf{U}_q -tilting and $\dim(\mathrm{End}_{\mathbf{U}_q}(T))$ is independent of $\mathbb K$ and q, since $\Delta_q(\lambda)$ has a character independent of $\mathbb K$ and of q.

Example (Schur 1901, de Concini-Procesi 1976)

By Schur-Weyl, we see that

$$\Phi_{\mathrm{SW}} \colon \mathbb{K}[S_d] \twoheadrightarrow \mathrm{End}_{\mathsf{U}_1}(T) \quad \text{and} \quad \Phi_{\mathrm{SW}} \colon \mathbb{K}[S_d] \xrightarrow{\cong} \mathrm{End}_{\mathsf{U}_1}(T), \text{ if } n \geq d.$$

Thus, $\dim(\mathbb{K}[S_d])$ independent of \mathbb{K} and q.

Exempli gratia (Temperley-Lieb without diagrams)

Let us consider our favorite case again. From the construction of $T_q(3)$:

$$\Delta_q(3) \hookrightarrow T_q(3) \longrightarrow \Delta_q(1).$$

We compute:

$$\mathcal{T}_{\nu} = \Delta_{\nu}(1) \otimes \Delta_{\nu}(1) \otimes \Delta_{\nu}(1) \cong \Delta_{\nu}(3) \oplus \Delta_{\nu}(1) \oplus \Delta_{\nu}(1),$$

whereas

$$T_q = \Delta_q(1) \otimes \Delta_q(1) \otimes \Delta_q(1) \cong T_q(3) \oplus T_q(1).$$

In particular, $\dim(\operatorname{End}_{\mathbf{U}_{\nu}(\mathfrak{sl}_2)}(T_{\nu})) = \dim(\operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_2)}(T_q)) = 1^2 + 2^2 = 5.$

Note that $\operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_2)}(\Delta_q(1)^{\otimes d})$ is the Temperley-Lieb algebra $\mathcal{TL}_d(\delta)$ introduced by Rumer-Teller-Weyl (1932).

Cellular algebras

Definition(Graham-Lehrer 1996)

A \mathbb{K} -algebra A is cellular if it has a basis

$$\{c_{ij}^{\lambda} \mid \lambda \in \mathcal{P}, i, j \in \mathcal{I}\},\$$

where (\mathcal{P}, \leq) is a finite poset and \mathcal{I}^{λ} is a finite set, such that

- The map i: $A \to A$, $c_{ii}^{\lambda} \mapsto c_{ii}^{\lambda}$ is an anti-isomorphism.
- We have (for friends of higher order)

$$ac_{ij}^{\lambda} = \sum_{k \in \mathcal{I}^{\lambda}} r_{ik}(a)c_{kj}^{\lambda} + \text{friends.}$$

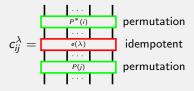
Note that the scalars $r_{ik}(a)$ do not depend on j. Thus, we think of the basis elements as having "independent bottom and top parts".

Daniel Tubbenhauer Cellular algebras July 2015

Prototype of a cellular basis

Example(Specht 1935, Murphy 1995)

 $\mathcal{P} =$ Young diagrams λ , $\mathcal{I}^{\lambda} =$ standard tableaux i, j.



Form $S^{\lambda}=\{c_{j}^{\lambda}\}$ with formal c_{j}^{λ} and action given by the $r_{ik}(a)$. The set

$$\{D^{\lambda} = S^{\lambda}/\mathrm{Rad}(S^{\lambda}) \mid \lambda \in \mathcal{P}_0\}$$

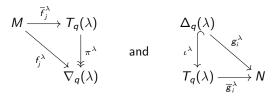
forms a complete set of pairwise non-isomorphic, simple $\mathbb{K}[S_d]$ -modules.

Theorem (Graham-Lehrer 1996)

This works in general for cellular algebras.

And for End_{U_a}(T)?

Let M have a Δ_q - and N have ∇_q -filtration. Consider $\mathcal{I}^{\lambda} = \{1, \dots, (N : \nabla_q(\lambda))\}$ and $\mathcal{J}^{\lambda} = \{1, \dots, (M : \Delta_q(\lambda))\}$. By Ext-vanishing, we have diagrams



Take any bases $F^{\lambda} = \{f_j^{\lambda} \colon M \to \nabla_q(\lambda) \mid j \in \mathcal{J}^{\lambda}\}$ of $\mathrm{Hom}_{\mathbf{U}_q}(M, \nabla_q(\lambda))$ and $G^{\lambda} = \{g_i^{\lambda} \colon \Delta_q(\lambda) \to N \mid i \in \mathcal{I}^{\lambda}\}$ of $\mathrm{Hom}_{\mathbf{U}_q}(\Delta_q(\lambda), N)$. Set

$$c_{ij}^{\lambda} = \overline{g}_{i}^{\lambda} \circ \overline{f}_{j}^{\lambda} \in \mathrm{Hom}_{\mathbf{U}_{q}}(M, N)$$

for each $\lambda \in X^+$ and all $i \in \mathcal{I}^{\lambda}, j \in \mathcal{J}^{\lambda}$.

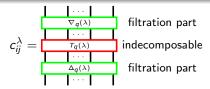
$\operatorname{End}_{\mathbf{U}_a}(T)$ is prototypical cellular

Cell datum:

- $\bullet \ (\mathcal{P}, \leq) = (\{\lambda \in X^+ \mid (T : \nabla_q(\lambda)) = (T : \Delta_q(\lambda)) \neq 0\}, \leq_X).$
- $\bullet \ \mathcal{I}^{\lambda} = \{1, \ldots, (\mathcal{T} : \nabla_q(\lambda))\} = \{1, \ldots, (\mathcal{T} : \Delta_q(\lambda))\} = \mathcal{J}^{\lambda} \ \text{for each} \ \lambda \in \mathcal{P}.$
- \mathbb{K} -linear anti-involution i: $\operatorname{End}_{\mathbf{U}_a}(T) \to \operatorname{End}_{\mathbf{U}_a}(T), \phi \mapsto \mathcal{D}(\phi)$.
- Note that $\mathcal{D}(\Delta_q(\lambda)) \cong \nabla_q(\lambda)$ and $\mathcal{D}(\nabla_q(\lambda)) \cong \Delta_q(\lambda)$.
- Cellular basis $\{c_{ij}^{\lambda} \mid \lambda \in \mathcal{P}, i, j \in \mathcal{I}^{\lambda}\}.$

Theorem

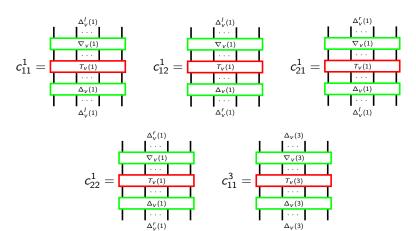
This gives a cellular datum on $\operatorname{End}_{\mathbf{U}_q}(T)$ for any \mathbf{U}_q -tilting module T.



Exempli gratia (generic Temperley-Lieb)

 $\mathsf{Take}\ \mathbb{K} = \mathbb{C}\ \mathsf{and}\ T = \Delta_{\nu}(1)^{\otimes 3} \cong \Delta_{\nu}(3) \oplus \Delta_{\nu}^{\prime}(1) \oplus \Delta_{\nu}^{\prime}(1).\ \mathsf{Then}\ \mathcal{P} = \{1,3\}.$

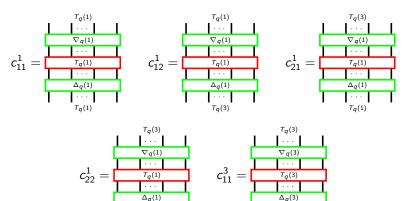
We have $\mathcal{I}^1=\{1,2\}$ and $\mathcal{I}^3=\{1\}$. Thus, we have a basis



Exempli gratia (roots of unity Temperley-Lieb)

Take $T = \Delta_q(1)^{\otimes 3} \cong T_q(3) \oplus T_q(1)$. Then $\mathcal{P} = \{1,3\}$.

We have $\mathcal{I}^1=\{1,2\}$ and $\mathcal{I}^3=\{1\}$. Consider $1\in\mathcal{I}^1$ as indexing the factor $\Delta_q(1)$ of $T_q(1)$ and $2\in\mathcal{I}^1$ the factor $\Delta_q(1)$ of $T_q(3)$. Thus, we have a basis



 $T_q(3)$

 $T_q(3)$

Cellular pairing and simple $\operatorname{End}_{\mathbf{U}_a}(T)$ -modules

Let T be a \mathbf{U}_q -tilting module. For $\lambda \in \mathcal{P}$ define ϑ^λ via

$$\mathrm{i}(h)\circ g=\vartheta^\lambda(g,h)c^\lambda,\quad g,h\in C(\lambda)=\mathrm{Hom}_{\mathsf{U}_q}(\Delta_q(\lambda),T).$$

Define $\mathcal{P}_0 = \{\lambda \in \mathcal{P} \mid \vartheta^\lambda \neq 0\}$ and $\operatorname{Rad}(\lambda) = \{g \in C(\lambda) \mid \vartheta^\lambda(g, C(\lambda)) = 0\}.$

Theorem(Graham-Lehrer – reinterpreted)

The set

$$\{L(\lambda) = C(\lambda)/\operatorname{Rad}(\lambda) \mid \lambda \in \mathcal{P}_0\}$$

is a complete set of pairwise non-isomorphic, simple $\operatorname{End}_{\mathbf{U}_q}(T)$ -modules.

 $\lambda \in \mathcal{P}_0$ iff $T_q(\lambda)$ is a summand of T. Moreover,

$$\dim(L(\lambda)) = m_{\lambda}, \quad T \cong \bigoplus_{\lambda \in X^{+}} T_{q}(\lambda)^{\oplus m_{\lambda}}.$$

Exempli gratia (Temperley-Lieb again)

Because $T_{\nu} \cong \Delta_{\nu}(3) \oplus \Delta_{\nu}(1) \oplus \Delta_{\nu}(1)$ and $T_{q} \cong T_{q}(3) \oplus T_{q}(1)$ we see that $\mathcal{P}_{0} = \{1, 3\}$ in both cases.

In the generic case:

$$\begin{split} C(3) = L(3) = \{g_1^3 \colon \Delta_{\nu}(3) \to \mathcal{T}_{\nu}\} \;,\; C(1) = L(1) = \{g_j^1 \colon \Delta_{\nu}(1) \to \mathcal{T}_{\nu} \mid j = 1, 2\}, \\ \dim(L(3)) = 1 \quad \text{and} \quad \dim(L(1)) = 2. \end{split}$$

In the non-semisimple case:

$$\begin{split} C(3) = \mathit{L}(3) = \{g_1^3 \colon \Delta_q(3) \to \mathit{T}_q\}, & C(1) = \{g_j^1 \colon \Delta_q(1) \to \mathit{T}_q \mid j = 1, 2\}, \\ \dim(\mathit{L}(3)) = 1 & \text{and} & \dim(\mathit{L}(1)) = 1. \end{split}$$

An alternative semisimplicity criterion

Theorem(Graham-Lehrer 1996)

Let A be a cellular algebra with cell modules $C(\lambda)$ and simple modules $L(\lambda)$.

A is semisimple
$$\Leftrightarrow C(\lambda) = L(\lambda)$$
 for all $\lambda \in \mathcal{P}_0$.

We can prove an alternative statement in our framework.

Theorem

The algebra $\operatorname{End}_{\mathbf{U}_q}(T)$ is semisimple iff T is a semisimple \mathbf{U}_q -module.

Corollary

The algebra $\operatorname{End}_{\mathbf{U}_q}(T)$ is semisimple iff T has only simple Weyl factors. Check this e.g. via Jantzen's sum formula.

Exempli gratia (Temperley-Lieb yet again)

Because $T_{\nu} \cong \Delta_{\nu}(3) \oplus \Delta_{\nu}(1) \oplus \Delta_{\nu}(1)$, and $\Delta_{\nu}(3)$ and $\Delta_{\nu}(1)$ are simple Weyl factors, we see that $\operatorname{End}_{\mathbf{U}_{\nu}(\mathfrak{sl}_2)}(T_{\nu})$ is semisimple.

 T_q has a Weyl factor of the form $\Delta_q(3)$. This is a non-simple Weyl factor and thus, $\operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_2)}(T_q)$ is non-semisimple.

Similarly: $\mathcal{TL}_d(\delta) \cong \operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_2)}(\Delta_q(1)^{\otimes d})$ with $\delta \neq 0$ is semisimple iff q is not a root of unity in \mathbb{K} or $d < \operatorname{ord}(q^2)$.

Maschke – reinterpreted

Similar as for $\mathfrak{g}=\mathfrak{sl}_2$: take $\mathfrak{g}=\mathfrak{sl}_n$ for $n\geq d$ and it follows that $\mathbb{K}[S_d]\cong \operatorname{End}_{\mathbf{U}_1(\mathfrak{sl}_n)}(\Delta_1(\omega_1)^{\otimes d})$ is semisimple iff $\operatorname{char}(\mathbb{K})$ does not divide d!. Mutatis mutandis in case of the Iwahori-Hecke algebra.

A unified approach to cellularity - part 1

Note that our approach generalizes, for example to the infinite dimensional world (e.g. parabolic category \mathcal{O}^p): the following list is just the tip of the iceberg.

The following algebras fit in our set-up as well:

• The Iwahori-Hecke algebra of type A, by Schur-Weyl duality:

$$\Phi_{q\mathrm{SW}} \colon \mathcal{H}_d(q) \twoheadrightarrow \mathrm{End}_{\textbf{U}_q}(\textit{T}) \quad \text{and} \quad \Phi_{q\mathrm{SW}} \colon \mathcal{H}_d(q) \xrightarrow{\cong} \mathrm{End}_{\textbf{U}_q}(\textit{T}), \text{ if } n \geq d.$$

This includes $\mathbb{K}[S_d]$ for $\operatorname{char}(\mathbb{K}) = p > 0$.

- \mathfrak{sl}_2 -related algebras like Temperley-Lieb $\mathcal{TL}_d(\delta)$.
- Spider algebras $\operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_n)}(\Delta_q(\omega_{i_1})\otimes\cdots\otimes\Delta_q(\omega_{i_d})).$

A unified approach to cellularity - part 2

• Take $\mathfrak{g} = \mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}$ with $m_1 + \cdots + m_r = m$ and let V be the vector representation of $\mathbf{U}_1(\mathfrak{gl}_m)$ restricted to $\mathbf{U}_1 = \mathbf{U}_1(\mathfrak{g})$. Use $T = V^{\otimes d}$ and

$$\Phi_{\mathrm{cl}} \colon \mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d] \twoheadrightarrow \mathrm{End}_{\mathsf{U}_1}(\mathit{T}) \text{ and } \Phi_{\mathrm{cl}} \colon \mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d] \xrightarrow{\cong} \mathrm{End}_{\mathsf{U}_1}(\mathit{T}), \text{ if } m \geq d.$$

This gives the cyclotomic analogon of the first point above.

• Let $\mathbf{U}_q = \mathbf{U}_q(\mathfrak{g})$. We get in the quantized case

$$\Phi_{qcl} \colon \mathcal{H}_{d,r}(q) \twoheadrightarrow \operatorname{End}_{\mathbf{U}_q}(T)$$
 and $\Phi_{qcl} \colon \mathcal{H}_{d,r}(q) \xrightarrow{\cong} \operatorname{End}_{\mathbf{U}_q}(T)$, if $m \geq d$, where $\mathcal{H}_{d,r}(q)$ is the Ariki-Koike algebra.

• Special cases are Iwahori-Hecke algebras of type B.

A unified approach to cellularity - part 3

• Let $T = \Delta_q(\omega_1)^{\otimes d}$. Let $g = \mathfrak{o}_{2n}$, $g = \mathfrak{o}_{2n+1}$ or $g = \mathfrak{sp}_{2n}$ (depending on δ).

$$\Phi_{\operatorname{Br}} \colon \mathcal{B}_d(\delta) \twoheadrightarrow \operatorname{End}_{\mathbf{U}_1}(\mathcal{T}) \quad \text{and} \quad \Phi_{\operatorname{Br}} \colon \mathcal{B}_d(\delta) \xrightarrow{\cong} \operatorname{End}_{\mathbf{U}_1}(\mathcal{T}), \text{ if } 2n \geq d,$$

where $\mathcal{B}_d(\delta)$ is the Brauer algebra in d strands.

• Let $\mathbf{U}_1 = \mathbf{U}_1(\mathfrak{gl}_n)$ and $T = \Delta_1(\omega_1)^{\otimes r} \otimes (\Delta_1(\omega_1)^{\otimes s})^*$:

$$\Phi_{\operatorname{wBr}} \colon \mathcal{B}^n_{r,s}(\delta) \twoheadrightarrow \operatorname{End}_{\mathbf{U}_1}(\mathcal{T}) \text{ and } \Phi_{\operatorname{wBr}} \colon \mathcal{B}^n_{r,s}(\delta) \xrightarrow{\cong} \operatorname{End}_{\mathbf{U}_1}(\mathcal{T}), \text{ if } n \geq r+s,$$

where $\mathcal{B}_{r,s}^n(\delta)$ the so-called walled Brauer algebra.

- Quantizing the (walled) Brauer case: the algebra $\operatorname{End}_{\mathbf{U}_q}(T)$ is a quotient of the Birman-Murakami-Wenzl algebra $\mathcal{BMW}_d(\delta)$ and taking $n \geq 2d$ recovers $\mathcal{BMW}_d(\delta)$. Similar for the quantized walled Brauer algebra.
- Way more: quotients of these, "infinite dimensional analogons of Schur-Weyl dualities" give cyclotomic KL-R algebras etc.

There is still much to do...

Thanks for your attention!